精英家教网 > 高中数学 > 题目详情
20.一个圆的圆心在抛物线y2=4x上,且该圆经过抛物线的顶点和焦点,若圆心在第一象限,圆心到直线ax+y-$\sqrt{2}$=0的距离为$\frac{\sqrt{2}}{4}$,则a=(  )
A.1B.-1C.±1D.$\frac{3}{2}$

分析 由题意知圆心C也在线段OF的中垂线上,
由此求出圆心,再利用圆心到直线的距离列方程求出a的值.

解答 解:由题意知,抛物线的焦点为F(1,0),圆心在线段OF的中垂线x=$\frac{1}{2}$上,
由$\left\{\begin{array}{l}{{y}^{2}=4x}\\{x=\frac{1}{2}}\end{array}\right.$,且圆心在第一象限内,
解得x=$\frac{1}{2}$,y=$\sqrt{2}$,
所以圆心C为($\frac{1}{2}$,$\sqrt{2}$);
又圆心C到直线ax+y-$\sqrt{2}$=0的距离为$\frac{\sqrt{2}}{4}$,
所以d=$\frac{|\frac{1}{2}a+\sqrt{2}-\sqrt{2}|}{\sqrt{{a}^{2}+1}}$=$\frac{\sqrt{2}}{4}$,
解得a=±1.
故选:C.

点评 本题考查了直线与圆锥曲线的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在公差不为零的等差数列{an}和等比数列{bn}中,已知a1=b1=1,a2=b2,a6=b3
(1)求通项an和bn
(2)求数列{an•bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2acosθ(a>0),过点P(-2,-4)的直线l的参数方程为$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),直线l与曲线C分别交于A、B两点.
(1)写出曲线C的平面直角坐标系方程和直线l的普通方程;
(2)若|PA||PB|-$\sqrt{2}$(|PA|+|PB|)=36,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知直线l1:x+ay-1=0,l2:(a-2)x+ay+1=0,若l1∥l2,则实数a=0或3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,3)
(1)求向量$\overrightarrow{a}$与向量$\overrightarrow{b}$的夹角的余弦值
(2)若k$\overrightarrow{a}$$+\overrightarrow{b}$与2$\overrightarrow{a}$$-\overrightarrow{b}$共线,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若tanα+$\frac{1}{tanα}$=$\frac{10}{3}$,α∈($\frac{π}{4}$,$\frac{π}{2}$),则sin(2α+$\frac{π}{4}$)的值为(  )
A.-$\frac{\sqrt{2}}{10}$B.$\frac{\sqrt{2}}{10}$C.$\frac{3\sqrt{2}}{10}$D.$\frac{7\sqrt{2}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}的通项公式为an=an2+n(n∈N*),若满足a1<a2<a3<a4<a5<a6,且an>an+1,对任意n≥10恒成立,则实数a的取值范围是$(-\frac{1}{11},-\frac{1}{21})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,内角A,B,C所对的边分别为a,b,c,且a=2b,3bsinC=c,则sinA等于(  )
A.$\frac{2}{3}$B.$\frac{3}{4}$C.$\frac{4}{9}$D.$\frac{9}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.曲线 y=3lnx+$\frac{1}{x}$在点(1,1)处的切线方程为y=2x-1.

查看答案和解析>>

同步练习册答案