11£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÒÑÖªÇúÏßC£º¦Ñsin2¦È=2acos¦È£¨a£¾0£©£¬¹ýµãP£¨-2£¬-4£©µÄÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬Ö±ÏßlÓëÇúÏßC·Ö±ð½»ÓÚA¡¢BÁ½µã£®
£¨1£©Ð´³öÇúÏßCµÄÆ½ÃæÖ±½Ç×ø±êϵ·½³ÌºÍÖ±ÏßlµÄÆÕͨ·½³Ì£»
£¨2£©Èô|PA||PB|-$\sqrt{2}$£¨|PA|+|PB|£©=36£¬ÇóʵÊýaµÄÖµ£®

·ÖÎö £¨1£©ÇúÏßC£º¦Ñsin2¦È=2acos¦È£¨a£¾0£©£¬¼´¦Ñ2sin2¦È=2a¦Ñcos¦È£¨a£¾0£©£¬ÀûÓû¥»¯¹«Ê½¿ÉµÃÖ±½Ç×ø±ê·½³Ì£®¹ýµãP£¨-2£¬-4£©µÄÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt¿ÉµÃÆÕͨ·½³Ì£®
£¨2£©°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì´úÈëy2=2ax£¨a£¾0£©£®¿ÉµÃ£ºt2-£¨8$\sqrt{2}$+2$\sqrt{2}$a£©t+8a+32=0£¬¸ù¾Ý|PA||PB|-$\sqrt{2}$£¨|PA|+|PB|£©=36£¬¿ÉµÃ|t1•t2|-$\sqrt{2}$|t1+t2|=36£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÇúÏßC£º¦Ñsin2¦È=2acos¦È£¨a£¾0£©£¬¼´¦Ñ2sin2¦È=2a¦Ñcos¦È£¨a£¾0£©£¬ÀûÓû¥»¯¹«Ê½¿ÉµÃÖ±½Ç×ø±ê·½³Ì£º
y2=2ax£¨a£¾0£©£®
¹ýµãP£¨-2£¬-4£©µÄÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt¿ÉµÃÆÕͨ·½³Ì£ºx-y-2=0£®
£¨2£©°ÑÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©´úÈëy2=2ax£¨a£¾0£©£®
¿ÉµÃ£ºt2-£¨8$\sqrt{2}$+2$\sqrt{2}$a£©t+8a+32=0£¬
¡àt1+t2=8$\sqrt{2}$+2$\sqrt{2}$a£¬t1•t2=8a+32£®
¡ß|PA||PB|-$\sqrt{2}$£¨|PA|+|PB|£©=36£¬
¡à|t1•t2|-$\sqrt{2}$|t1+t2|=36£¬
¡à8a+32-$\sqrt{2}$£¨8$\sqrt{2}$+2$\sqrt{2}$a£©=36£¬
½âµÃa=5£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢Ö±ÏßÓëÅ×ÎïÏßÏཻÏÒ³¤ÎÊÌâ¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Ä³ÐËȤС×éÓÐ9ÃûѧÉú£®Èô´Ó9ÃûѧÉúÖÐѡȡ3ÈË£¬ÔòѡȡµÄ3ÈËÖÐÇ¡ºÃÓÐÒ»¸öÅ®ÉúµÄ¸ÅÂÊÊÇ$\frac{15}{28}$£®
£¨1£©¸ÃС×éÖÐÄÐŮѧÉú¸÷¶àÉÙÈË£¿
£¨2£©9¸öѧÉúÕ¾³ÉÒ»Áжӣ¬ÏÖÒªÇóÅ®Éú±£³ÖÏà¶Ô˳Ðò²»±ä£¨¼´Å®Éú ǰºó˳Ðò±£³Ö²»±ä£©ÖØÐÂÕ¾¶Ó£¬ÎÊÓжàÉÙÖÖÖØÐÂÕ¾¶ÓµÄ·½·¨£¿£¨ÒªÇóÓÃÊý×Ö×÷´ð£©
£¨3£©9ÃûѧÉúÕ¾³ÉÒ»ÁУ¬ÒªÇóÄÐÉú±ØÐëÁ½Á½Õ¾ÔÚÒ»Æð£¬ÓжàÉÙÖÖÕ¾¶ÓµÄ·½·¨£¿£¨ÒªÇóÓÃÊý×Ö×÷´ð£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªÏòÁ¿|$\overrightarrow a$|=4£¬|$\overrightarrow b$|=3£¬$£¨2\overrightarrow a-3\overrightarrow b£©•£¨2\overrightarrow a+\overrightarrow b£©=61$£®
£¨1£©Çó|$\overrightarrow a+\overrightarrow b$|£»
£¨2£©ÇóÏòÁ¿$\overrightarrow a$ÔÚÏòÁ¿$\overrightarrow b$·½ÏòÉϵÄͶӰ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑ֪˫ÇúÏß¹ýµã$£¨3£¬\sqrt{15}£©$£¬½¥½øÏß·½³ÌΪ$y=¡À\sqrt{3}x$£¬Ô²C¾­¹ýË«ÇúÏßµÄÒ»¸ö¶¥µãºÍÒ»¸ö½¹µã£¬ÇÒÔ²ÐÄÔÚË«ÇúÏßÉÏ£¬ÔòÔ²Ðĵ½¸ÃË«ÇúÏßµÄÖÐÐĵľàÀëΪ£¨¡¡¡¡£©
A£®3B£®$\sqrt{5}$C£®$2\sqrt{6}$D£®$\sqrt{15}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖªÊýÁÐ{an}ÖУ¬a1=2£¬an+1=$\sqrt{{a}_{n}}$£¬Ôòan=${2}^{{2}^{1-n}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÓÐһЩ×ÔÈ»ÊýÅųɵĵ¹Èý½Ç£¬´ÓµÚ¶þÐÐÆð£¬Ã¿¸öÊý×ÖµÈÓÚ¡°Á½¼ç¡±ÊýµÄºÍ£¬×îºóÒ»ÐÐÖ»ÓÐÒ»¸öÊýM£¬ÄÇôM=576£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®$tan\frac{5¦Ð}{4}$=£¨¡¡¡¡£©
A£®-1B£®$\frac{1}{2}$C£®$-\frac{{\sqrt{2}}}{2}$D£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Ò»¸öÔ²µÄÔ²ÐÄÔÚÅ×ÎïÏßy2=4xÉÏ£¬ÇÒ¸ÃÔ²¾­¹ýÅ×ÎïÏߵĶ¥µãºÍ½¹µã£¬ÈôÔ²ÐÄÔÚµÚÒ»ÏóÏÞ£¬Ô²Ðĵ½Ö±Ïßax+y-$\sqrt{2}$=0µÄ¾àÀëΪ$\frac{\sqrt{2}}{4}$£¬Ôòa=£¨¡¡¡¡£©
A£®1B£®-1C£®¡À1D£®$\frac{3}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Èç¹ûº¯Êýf£¨x£©¶ÔÈÎÒâµÄʵÊýx£¬¶¼ÓÐf£¨x£©=f£¨1-x£©£¬ÇÒµ±$x¡Ý\frac{1}{2}$ʱ£¬f£¨x£©=log2£¨3x-1£©£¬ÄÇôº¯Êýf£¨x£©ÔÚ[-2£¬0]µÄ×î´óÖµÓë×îСֵ֮²îΪ£¨¡¡¡¡£©
A£®4B£®3C£®2D£®1

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸