精英家教网 > 高中数学 > 题目详情
3.$tan\frac{5π}{4}$=(  )
A.-1B.$\frac{1}{2}$C.$-\frac{{\sqrt{2}}}{2}$D.1

分析 直接利用诱导公式化简求解即可.

解答 解:$tan\frac{5π}{4}$=tan$\frac{π}{4}$=1.
故选:D.

点评 本题考查诱导公式的应用,特殊角的三角函数求值,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.函数$y=sin(\frac{2005}{2}π-x)$是(  )
A.奇函数B.偶函数
C.非奇非偶函数D.既是奇函数又是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某商场周年庆,准备提供一笔资金,对消费满一定金额的顾客以参与活动的方式进行奖励,顾客从一个装有大小相同的2个红球和4个黄球的袋中按指定规则取出2个球,根据取到的红球数确定奖励金额,具体金额设置如下表:
取到的红球数 
 奖励(单位:元) 5 1050 
现有两种取球规则的方案:
方案一:一次性随机取出2个球;
方案二:依次有放回取出2个球.
(1)比较两种方案下,一次抽奖获得50元奖金概率的大小;
(2)为使得尽可能多的人参与活动,作为公司负责人,你会选择哪种方案?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2acosθ(a>0),过点P(-2,-4)的直线l的参数方程为$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),直线l与曲线C分别交于A、B两点.
(1)写出曲线C的平面直角坐标系方程和直线l的普通方程;
(2)若|PA||PB|-$\sqrt{2}$(|PA|+|PB|)=36,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,A=60°,b,c是方程x2-3x+2=0的两个实根,则边BC上的高为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知直线l1:x+ay-1=0,l2:(a-2)x+ay+1=0,若l1∥l2,则实数a=0或3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,3)
(1)求向量$\overrightarrow{a}$与向量$\overrightarrow{b}$的夹角的余弦值
(2)若k$\overrightarrow{a}$$+\overrightarrow{b}$与2$\overrightarrow{a}$$-\overrightarrow{b}$共线,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}的通项公式为an=an2+n(n∈N*),若满足a1<a2<a3<a4<a5<a6,且an>an+1,对任意n≥10恒成立,则实数a的取值范围是$(-\frac{1}{11},-\frac{1}{21})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知某算法的算法框图如图所示.

(1)求函数y=f(x)的解析式;
(2)求f(f(-$\frac{1}{4}$))的值.

查看答案和解析>>

同步练习册答案