精英家教网 > 高中数学 > 题目详情
8.已知直线l1:x+ay-1=0,l2:(a-2)x+ay+1=0,若l1∥l2,则实数a=0或3.

分析 利用直线平行的性质求解.

解答 解:直线l1:x+ay-1=0,l2:(a-2)x+ay+1=0,
当a=0时,l1:x-1=0,l2:-2x+1=0,此时l1∥l2
当a≠0时,若l1∥l2,则-$\frac{1}{a}$=-$\frac{a-2}{a}$,解得a=3,
故答案为:0或3

点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意直线平行的性质的灵活运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知复数z=1-$\frac{1}{i}$,则$\overline{z}$=(  )
A.-1+iB.-1-iC.1+iD.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线过点$(3,\sqrt{15})$,渐进线方程为$y=±\sqrt{3}x$,圆C经过双曲线的一个顶点和一个焦点,且圆心在双曲线上,则圆心到该双曲线的中心的距离为(  )
A.3B.$\sqrt{5}$C.$2\sqrt{6}$D.$\sqrt{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.有一些自然数排成的倒三角,从第二行起,每个数字等于“两肩”数的和,最后一行只有一个数M,那么M=576.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.$tan\frac{5π}{4}$=(  )
A.-1B.$\frac{1}{2}$C.$-\frac{{\sqrt{2}}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=|x+1|+|x+2|
(Ⅰ)解不等式:f(x)≤5
(Ⅱ)若对任意的x∈R,f(x)≥a2-2a恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一个圆的圆心在抛物线y2=4x上,且该圆经过抛物线的顶点和焦点,若圆心在第一象限,圆心到直线ax+y-$\sqrt{2}$=0的距离为$\frac{\sqrt{2}}{4}$,则a=(  )
A.1B.-1C.±1D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知点P(2,1),直线l:x-y-4=0,则点P到直线l的距离为$\frac{3\sqrt{2}}{2}$,点P关于直线l对称点的坐标为(5,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=x2-2x,g(x)=lnx,函数F(x)=$\left\{\begin{array}{l}{f(x),f(x)≥g(x)}\\{g(x),f(x)<g(x)}\end{array}\right.$,则函数 F(x)的所有零点的和为(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案