精英家教网 > 高中数学 > 题目详情
8.已知α,β为锐角,且$cosα=\frac{{7\sqrt{2}}}{10}$,cos(α+β)=$\frac{2\sqrt{5}}{5}$,则cos2β=(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{2}{3}$D.$\frac{{7\sqrt{2}}}{10}$

分析 利用同角三角函数的基本关系,两角和差的余弦公式求得cosβ=cos[(α+β)-α]的值,再利用二倍角的余弦公式求得cos2β 的值.

解答 解:∵α,β为锐角,且$cosα=\frac{{7\sqrt{2}}}{10}$,∴sinα=$\sqrt{{1-cos}^{2}α}$=$\frac{\sqrt{2}}{10}$,
∵cos(α+β)=$\frac{2\sqrt{5}}{5}$>0,∴α+β还是锐角,∴sin(α+β)=$\sqrt{{1-cos}^{2}(α+β)}$=$\frac{\sqrt{5}}{5}$,
则cosβ=cos[(α+β)-α]=cos(α+β)cosα+sincos(α+β)sinα=$\frac{2\sqrt{5}}{5}$•$\frac{7\sqrt{2}}{10}$+$\frac{\sqrt{5}}{5}•\frac{\sqrt{2}}{10}$=$\frac{3\sqrt{10}}{10}$,
∴cos2β=2cos2β-1=$\frac{4}{5}$,
故选:B.

点评 本题主要考查同角三角函数的基本关系,两角和差的余弦公式、二倍角公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.行驶中的汽车,在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y(m)与汽车的车速x(km/h)满足下列关系:y=$\frac{nx}{100}$+$\frac{x^2}{400}$(n为常数,且n∈N).
我们做过两次刹车试验,第一次刹车时车速为40km/h,有关数据如图所示,其中$\left\{\begin{array}{l}5<{y_1}<7\\ 13<{y_2}<15.\end{array}\right.$
(1)求出n的值;
(2)要使刹车距离不超过18.4m,则行驶的最大速度应为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,角A,B,C的对边分别为a,b,c,若$acosB=\frac{C}{2},|{\overrightarrow{CA}+\overrightarrow{CB}}|=|{\overrightarrow{CA}-\overrightarrow{CB}}|$,则△ABC为(  )
A.等边三角形B.等腰直角三角形C.锐角三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设(1-2x)6=a0+a1x+a2x2+…+a6x6,则a0+a2+a4+a6=(  )
A.1B.-1C.365D.-365

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在公差不为零的等差数列{an}和等比数列{bn}中,已知a1=b1=1,a2=b2,a6=b3
(1)求通项an和bn
(2)求数列{an•bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.底面为正方形的四棱锥S-ABCD,且SD⊥平面ABCD,SD=$\sqrt{2}$,AB=1,线段SB上一M点满足$\frac{SM}{MB}$=$\frac{1}{2}$,N为线段CD的中点,P为四棱锥S-ABCD表面上一点,且DM⊥PN,则点P形成的轨迹的长度为(  )
A.$\sqrt{2}$B.$\frac{5\sqrt{2}}{4}$C.$\frac{3\sqrt{2}}{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=Asin(ωx+ϕ)(A>0,ω>0)的部分图象如图所示,则f(1)+f(2)+f(3)+…+f(2017)=(  )
A.0B.$\sqrt{2}$C.$\sqrt{2}+1$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知θ为第1象限角,且sinθ-cosθ=-$\frac{1}{5}$,求:
(1)sin2θ;
(2)sinθ+cosθ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若tanα+$\frac{1}{tanα}$=$\frac{10}{3}$,α∈($\frac{π}{4}$,$\frac{π}{2}$),则sin(2α+$\frac{π}{4}$)的值为(  )
A.-$\frac{\sqrt{2}}{10}$B.$\frac{\sqrt{2}}{10}$C.$\frac{3\sqrt{2}}{10}$D.$\frac{7\sqrt{2}}{10}$

查看答案和解析>>

同步练习册答案