精英家教网 > 高中数学 > 题目详情
4.已知θ为第1象限角,且sinθ-cosθ=-$\frac{1}{5}$,求:
(1)sin2θ;
(2)sinθ+cosθ.

分析 (1)原式两边平方,由二倍角的正弦公式即可化简求值;
(2)由(1)及结合已知条件即可求出sinθ+cosθ的值.

解答 解:(1)∵θ为第一象限角,sinθ-cosθ=-$\frac{1}{5}$,
∴两边平方可解得:1-sin2θ=$\frac{1}{25}$,
∴sin2θ=$\frac{24}{25}$;
(2)(sinθ+cosθ)2=(sinθ-cosθ)2+4sinθcosθ=$\frac{1}{25}+2sin2θ=\frac{49}{25}$,又θ为第一象限角,
∴sinθ+cosθ=$\frac{7}{5}$.

点评 本题主要考查了同角三角函数的基本关系,考查了二倍角的正弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C的对边分别为a,b,c,且a=2,$cosC=-\frac{1}{4}$.
(Ⅰ)如果b=3,求c的值;
(Ⅱ)如果$c=2\sqrt{6}$,求sinB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知α,β为锐角,且$cosα=\frac{{7\sqrt{2}}}{10}$,cos(α+β)=$\frac{2\sqrt{5}}{5}$,则cos2β=(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{2}{3}$D.$\frac{{7\sqrt{2}}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点F(1,0),过点F的直线l与椭圆交于C,D两点,且点C到焦点的最大距离与最小距离之比为3.
(Ⅰ)求椭圆的方程;
(Ⅱ)若CD与x轴垂直.A、B是椭圆上位于直线CD两侧的动点,满足∠ACD=∠BCD,则直线AB的斜率是否为定值?若是,请求出该定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线过点$(3,\sqrt{15})$,渐进线方程为$y=±\sqrt{3}x$,圆C经过双曲线的一个顶点和一个焦点,且圆心在双曲线上,则圆心到该双曲线的中心的距离为(  )
A.3B.$\sqrt{5}$C.$2\sqrt{6}$D.$\sqrt{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.对具有线性相关关系的变量x,y,测得一组数据如下
x24568
y2040607080
根据上表,利用最小二乘法得它们的回归直线方程为$\stackrel{∧}{y}$=10.5x+$\stackrel{∧}{a}$,据此模型预测当x=10时,y的估计值为(  )
A.105.5B.106C.106.5D.107

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.有一些自然数排成的倒三角,从第二行起,每个数字等于“两肩”数的和,最后一行只有一个数M,那么M=576.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=|x+1|+|x+2|
(Ⅰ)解不等式:f(x)≤5
(Ⅱ)若对任意的x∈R,f(x)≥a2-2a恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.“x>1”是“${log_{\frac{1}{2}}}(x+2)<0$”的(  )条件.
A.充要B.必要不充分
C.充分不必要D.既不充分也不必要

查看答案和解析>>

同步练习册答案