精英家教网 > 高中数学 > 题目详情
19.在△ABC中,角A,B,C的对边分别为a,b,c,若$acosB=\frac{C}{2},|{\overrightarrow{CA}+\overrightarrow{CB}}|=|{\overrightarrow{CA}-\overrightarrow{CB}}|$,则△ABC为(  )
A.等边三角形B.等腰直角三角形C.锐角三角形D.钝角三角形

分析 设AB的中点为D,由余弦定理、向量知识推导出a=b,CD=AD=BD,由此能求出△ABC为等腰直角三角形.

解答 解:设AB的中点为D,
∵在△ABC中,角A,B,C的对边分别为a,b,c,
$acosB=\frac{c}{2},|{\overrightarrow{CA}+\overrightarrow{CB}}|=|{\overrightarrow{CA}-\overrightarrow{CB}}|$,
∴$\left\{\begin{array}{l}{a×\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}=\frac{c}{2}}\\{CD=\frac{1}{2}AB}\end{array}\right.$,
整理,得a=b,CD=AD=BD,
∴△ABC为等腰直角三角形.
故选:B.

点评 本题考查三角形形状的判断,考查余弦定理、向量等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知sin($\frac{π}{3}$+α)=$\frac{3}{5}$,$\frac{π}{6}$<α<$\frac{2π}{3}$,则cosα=$\frac{3\sqrt{3}-4}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设m∈N*,且m<25,则(20-m)(21-m)…(26-m)等于(  )
A.$A_{26-m}^7$B.$C_{26-m}^7$C.$A_{20-m}^7$D.$A_{26-m}^6$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C的对边分别为a,b,c,且a=2,$cosC=-\frac{1}{4}$.
(Ⅰ)如果b=3,求c的值;
(Ⅱ)如果$c=2\sqrt{6}$,求sinB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某兴趣小组有9名学生.若从9名学生中选取3人,则选取的3人中恰好有一个女生的概率是$\frac{15}{28}$.
(1)该小组中男女学生各多少人?
(2)9个学生站成一列队,现要求女生保持相对顺序不变(即女生 前后顺序保持不变)重新站队,问有多少种重新站队的方法?(要求用数字作答)
(3)9名学生站成一列,要求男生必须两两站在一起,有多少种站队的方法?(要求用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知对?x∈(0,+∞),不等式2ax>ex-1恒成立,则实数a的最小值是(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知复数z=1-$\frac{1}{i}$,则$\overline{z}$=(  )
A.-1+iB.-1-iC.1+iD.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知α,β为锐角,且$cosα=\frac{{7\sqrt{2}}}{10}$,cos(α+β)=$\frac{2\sqrt{5}}{5}$,则cos2β=(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{2}{3}$D.$\frac{{7\sqrt{2}}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.有一些自然数排成的倒三角,从第二行起,每个数字等于“两肩”数的和,最后一行只有一个数M,那么M=576.

查看答案和解析>>

同步练习册答案