13£®µ×ÃæÎªÕý·½ÐεÄËÄÀâ×¶S-ABCD£¬ÇÒSD¡ÍÆ½ÃæABCD£¬SD=$\sqrt{2}$£¬AB=1£¬Ïß¶ÎSBÉÏÒ»MµãÂú×ã$\frac{SM}{MB}$=$\frac{1}{2}$£¬NΪÏß¶ÎCDµÄÖе㣬PΪËÄÀâ×¶S-ABCD±íÃæÉÏÒ»µã£¬ÇÒDM¡ÍPN£¬ÔòµãPÐγɵĹ켣µÄ³¤¶ÈΪ£¨¡¡¡¡£©
A£®$\sqrt{2}$B£®$\frac{5\sqrt{2}}{4}$C£®$\frac{3\sqrt{2}}{2}$D£®2$\sqrt{2}$

·ÖÎö È¡ADµÄÖеãE£¬ÔòEN¡ÍDM£¬ÀûÓÃÏòÁ¿Çó³öSDÉÏÒ»µãF£¬Ê¹µÃEF¡ÍDM£¬¹Ê¶øPµã¹ì¼£Îª¡÷EFN£®

½â´ð ½â£ºÒÔDÎª×ø±êÔ­µã£¬ÒÔDA£¬DC£¬DSÎª×ø±êÖὨÁ¢¿Õ¼äÖ±½Ç×ø±êϵ£¬ÈçͼËùʾ£º
ÔòB£¨1£¬1£¬0£©£¬S£¨0£¬0£¬$\sqrt{3}$£©£¬N£¨0£¬$\frac{1}{2}$£¬0£©£¬D£¨0£¬0£¬0£©£¬M£¨$\frac{1}{3}$£¬$\frac{1}{3}$£¬$\frac{2\sqrt{2}}{3}$£©£¬
È¡ADµÄÖеãE£¬ÔòE£¨$\frac{1}{2}$£¬0£¬0£©£¬¡à$\overrightarrow{DM}$=£¨$\frac{1}{3}$£¬$\frac{1}{3}$£¬$\frac{2\sqrt{2}}{3}$£©£¬$\overrightarrow{EN}$=£¨-$\frac{1}{2}$£¬$\frac{1}{2}$£¬0£©£¬
¡à$\overrightarrow{DM}•\overrightarrow{EN}$=0£¬¼´DM¡ÍEN£¬
ÔÚSDÉÏȡһµãF£¬ÉèF£¨0£¬0£¬a£©£¬Ôò$\overrightarrow{EF}$=£¨-$\frac{1}{2}$£¬0£¬a£©£¬
ÉèDM¡ÍEF£¬Ôò$\overrightarrow{DM}•\overrightarrow{EF}=0$£¬¼´-$\frac{1}{a}$+$\frac{2\sqrt{2}a}{3}$=0£¬½âµÃa=$\frac{1}{4\sqrt{2}}$£¬
¡àDM¡ÍÆ½ÃæEFN£¬
¡àPµã¹ì¼£Îª¡÷EFN£®
¡ßEF=FN=$\sqrt{{a}^{2}+\frac{1}{4}}$=$\frac{3\sqrt{2}}{8}$£¬EN=$\frac{1}{2}$AC=$\frac{\sqrt{2}}{2}$£¬
¡à¡÷EFNµÄÖܳ¤Îª$\frac{3\sqrt{2}}{8}¡Á2+\frac{\sqrt{2}}{2}$=$\frac{5\sqrt{2}}{4}$£®
¹ÊÑ¡£ºB£®

µãÆÀ ±¾Ì⿼²éÁËÀâ×¶µÄ½á¹¹ÌØÕ÷£¬¿Õ¼äÏòÁ¿ÓëÏßÃæ´¹Ö±µÄÅж¨£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®$\overrightarrow{AB}+\overrightarrow{BD}-\overrightarrow{AC}$=£¨¡¡¡¡£©
A£®$\overrightarrow{AC}$B£®$\overrightarrow{CD}$C£®$\overrightarrow{AB}$D£®$\overrightarrow{DB}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖª¶Ô?x¡Ê£¨0£¬+¡Þ£©£¬²»µÈʽ2ax£¾ex-1ºã³ÉÁ¢£¬ÔòʵÊýaµÄ×îСֵÊÇ£¨¡¡¡¡£©
A£®2B£®1C£®$\frac{1}{2}$D£®$\frac{1}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÉèÕýʵÊýx£¬yÂú×ã$x£¾\frac{1}{2}£¬y£¾1$£¬²»µÈʽ$\frac{{4{x^2}}}{y-1}+\frac{y^2}{2x-1}¡Ým$ºã³ÉÁ¢£¬ÔòmµÄ×î´óֵΪ8£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖª¦Á£¬¦ÂΪÈñ½Ç£¬ÇÒ$cos¦Á=\frac{{7\sqrt{2}}}{10}$£¬cos£¨¦Á+¦Â£©=$\frac{2\sqrt{5}}{5}$£¬Ôòcos2¦Â=£¨¡¡¡¡£©
A£®$\frac{3}{5}$B£®$\frac{4}{5}$C£®$\frac{2}{3}$D£®$\frac{{7\sqrt{2}}}{10}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖª$tan¦Á=\frac{1}{2}$£¬$tan£¨2¦Á-¦Â£©=\frac{1}{12}$£¬Ôòtan£¨¦Á-¦Â£©=£¨¡¡¡¡£©
A£®$-\frac{2}{5}$B£®$\frac{2}{5}$C£®$-\frac{14}{23}$D£®$-\frac{14}{23}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄÓÒ½¹µãF£¨1£¬0£©£¬¹ýµãFµÄÖ±ÏßlÓëÍÖÔ²½»ÓÚC£¬DÁ½µã£¬ÇÒµãCµ½½¹µãµÄ×î´ó¾àÀëÓë×îС¾àÀëÖ®±ÈΪ3£®
£¨¢ñ£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©ÈôCDÓëxÖá´¹Ö±£®A¡¢BÊÇÍÖÔ²ÉÏλÓÚÖ±ÏßCDÁ½²àµÄ¶¯µã£¬Âú×ã¡ÏACD=¡ÏBCD£¬ÔòÖ±ÏßABµÄбÂÊÊÇ·ñΪ¶¨Öµ£¿ÈôÊÇ£¬ÇëÇó³ö¸Ã¶¨Öµ£¬Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®¶Ô¾ßÓÐÏßÐÔÏà¹Ø¹ØÏµµÄ±äÁ¿x£¬y£¬²âµÃÒ»×éÊý¾ÝÈçÏÂ
x24568
y2040607080
¸ù¾ÝÉÏ±í£¬ÀûÓÃ×îС¶þ³Ë·¨µÃËüÃǵĻعéÖ±Ïß·½³ÌΪ$\stackrel{¡Ä}{y}$=10.5x+$\stackrel{¡Ä}{a}$£¬¾Ý´ËÄ£ÐÍÔ¤²âµ±x=10ʱ£¬yµÄ¹À¼ÆÖµÎª£¨¡¡¡¡£©
A£®105.5B£®106C£®106.5D£®107

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏCΪֱ½Ç£¬AC=BC=4£¬ÑØ¡÷ABCµÄÖÐλÏßDE£¬½«Æ½ÃæADEÕÛÆð£¬Ê¹µÃ¡ÏADC=90¡ã£¬µÃµ½ËÄÀâ×¶A-BCDE£®
£¨1£©ÇóÖ¤£»BC¡ÍÆ½ÃæACD£»
£¨2£©ÇóEµ½ÃæABCµÄ¾àÀ룻
£¨3£©MÊÇÀâCDµÄÖе㣬¹ýM×÷ƽÐÐÓÚÆ½ÃæABCµÄ½ØÃ棬»­³ö¸Ã½ØÃ棬²¢¼ÓÒÔÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸