精英家教网 > 高中数学 > 题目详情
3.$\overrightarrow{AB}+\overrightarrow{BD}-\overrightarrow{AC}$=(  )
A.$\overrightarrow{AC}$B.$\overrightarrow{CD}$C.$\overrightarrow{AB}$D.$\overrightarrow{DB}$

分析 直接利用向量的加法及减法法则写出结果即可.

解答 解:由向量加法及减法的运算法则可知:向量$\overrightarrow{AB}+\overrightarrow{BD}-\overrightarrow{AC}$=$\overrightarrow{CD}$.
故选:B.

点评 本题考查向量的基本运算,基本知识的考查,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=sinωx•cosωx+$\sqrt{3}$cos2ωx-$\frac{\sqrt{3}}{2}$(ω>0),直线x=x1,x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为$\frac{π}{4}$.
(1)求f(x)的表达式;
(2)将函数f(x)的图象向右平移$\frac{π}{8}$个单位长度后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若a<b<0,则下列不等中不成立的是(  )
A.|a|>|b|B.$\frac{1}{a+b}>\frac{1}{a}$C.$\frac{1}{b}>\frac{1}{a}$D.a2>b2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设非零向量$\overrightarrow a,\overrightarrow b$满足$|\overrightarrow a+\overrightarrow b|=|\overrightarrow a-\overrightarrow b|$,则(  )
A.$\overrightarrow a⊥\overrightarrow b$B.$|\overrightarrow a|=|\overrightarrow b|$C.$\overrightarrow a∥\overrightarrow b$D.$|\overrightarrow a|>|\overrightarrow b|$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.行驶中的汽车,在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y(m)与汽车的车速x(km/h)满足下列关系:y=$\frac{nx}{100}$+$\frac{x^2}{400}$(n为常数,且n∈N).
我们做过两次刹车试验,第一次刹车时车速为40km/h,有关数据如图所示,其中$\left\{\begin{array}{l}5<{y_1}<7\\ 13<{y_2}<15.\end{array}\right.$
(1)求出n的值;
(2)要使刹车距离不超过18.4m,则行驶的最大速度应为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=|ax-x2|+2b(a,b∈R).
(1)当b=0时,若不等式f(x)≤2x在x∈[0,2]上恒成立,求实数a的取值范围;
(2)已知a为常数,且函数f(x)在区间[0,2]上存在零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x}+1,x<1}\\{{x}^{2}+ax,x>1}\end{array}\right.$,若f(f(0))=4a,则实数a等于(  )
A.$\frac{1}{2}$B.$\frac{4}{5}$C.2D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知无穷数列{an}的首项为1,数列{bn}满足${b_n}={a_{n+1}}-{a_n},n∈{N^*}$.
(1)若${b_n}={2^n}$,求数列{an}的前n项和;
(2)若bn=bn-1bn+1(n≥2),且${b_1}=1,{b_2}=b({b≠0,-1,-\frac{1}{2}})$,求证:
①数列{bn}的前6项积为定值;
②数列{an}中的任一项都不会在该数列中出现无数次.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.底面为正方形的四棱锥S-ABCD,且SD⊥平面ABCD,SD=$\sqrt{2}$,AB=1,线段SB上一M点满足$\frac{SM}{MB}$=$\frac{1}{2}$,N为线段CD的中点,P为四棱锥S-ABCD表面上一点,且DM⊥PN,则点P形成的轨迹的长度为(  )
A.$\sqrt{2}$B.$\frac{5\sqrt{2}}{4}$C.$\frac{3\sqrt{2}}{2}$D.2$\sqrt{2}$

查看答案和解析>>

同步练习册答案