【题目】下面使用类比推理正确的是( )
A.直线a∥b,b∥c,则a∥c,类推出:向量 , ,则
B.同一平面内,直线a,b,c,若a⊥c,b⊥c,则a∥b.类推出:空间中,直线a,b,c,若a⊥c,b⊥c,则a∥b
C.实数a,b,若方程x2+ax+b=0有实数根,则a2≥4b.类推出:复数a,b,若方程x2+ax+b=0有实数根,则a2≥4b
D.以点(0,0)为圆心,r为半径的圆的方程为x2+y2=r2 . 类推出:以点(0,0,0)为球心,r为半径的球的方程为x2+y2+z2=r2
科目:高中数学 来源: 题型:
【题目】下列各组函数是同一函数的是( )
① 与 ;
②f(x)=x与 ;
③f(x)=x0与 ;
④f(x)=x2﹣2x﹣1与g(t)=t2﹣2t﹣1.
A.①②
B.①③
C.③④
D.①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平面四边形ABCD中,AB= ,AD=2 ,CD= ,∠CBD=30°,∠BCD=120°.
(1)求BD的长;
(2)求∠ADC的度数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=ax2+x﹣a.a∈R
(1)若不等式f(x)<b的解集为(﹣∞,﹣1)∪(3,+∞),求a,b的值;
(2)若a<0,解不等式f(x)>1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)=ax2+bx﹣3在x=1处取得极值,且在(0,﹣3)点处的切线与直线2x+y=0平行. (Ⅰ)求f(x)的解析式;
(Ⅱ)求函数g(x)=xf(x)+4x的单调递增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知关于x的方程:x2+2(a﹣1)x+2a+6=0.
(Ⅰ)若该方程有两个不等实数根,求实数a的取值范围;
(Ⅱ)若该方程有两个不等实数根,且这两个根都大于1,求实数a的取值范围;
(Ⅲ)设函数f(x)=x2+2(a﹣1)x+2a+6,x∈[﹣1,1],记此函数的最大值为M(a),最小值为N(a),求M(a),N(a)的解析式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设F1、F2分别为椭圆Γ: =1(a>b>0)的左、右两个焦点,若椭圆上一点M(1, )到两个焦点的距离之和等于4.又已知点A是椭圆的右顶点,直线l交椭圆Γ于E、F两点(E、F与A点不重合),且满足AE⊥AF. (Ⅰ) 求椭圆的标准方程;
(Ⅱ) O为坐标原点,若点P满足2 ,求直线AP的斜率的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com