Èçͼ£¬ÔÚyÖáµÄÕý°ëÖáÉÏÒÀ´ÎÓеãA1£¬A2£¬¡­An£¬¡­£¬ÆäÖеãA1£¨0£¬1£©¡¢A2£¨0£¬10£©ÇÒ|An-1An|=3|AnAn+1|£¨n=2£¬3£¬4£¬¡­£©£¬ÔÚÉäÏßy=x£¨x¡Ý0£©ÉÏÒ»´ÎÓеãB1£¬B2£¬¡­Bn£¬¡­£¬µãB1£¨3£¬3£©£¬ÇÒ|OBn|=|OBn-1|+2
2
£¨n=2£¬3£¬4£¬¡­£©£®
£¨1£©ÇóµãAn¡¢BnµÄ×ø±ê£¨Óú¬nµÄʽ×Ó±íʾ£©£®
£¨2£©ÉèËıßÐÎAnBnBn+1An+1µÄÃæ»ýΪSn£¬½â´ðÏÂÁÐÎÊÌ⣺
¢ÙÇóÊýÁÐ{Sn}µÄͨÏʽ£»
¢ÚÎÊ{Sn}ÖÐÊÇ·ñ´æÔÚÁ¬ÐøµÄÈýÏîSn£¬Sn+1£¬Sn+2£¨n¡ÊN*£©Ç¡ºÃ³ÉµÈ²îÊýÁУ¿Èô´æÔÚ£¬Çó³öËùÓÐÕâÑùµÄÈýÏÈô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¿¼µã£ºµÈ²îÊýÁÐÓëµÈ±ÈÊýÁеÄ×ÛºÏ
רÌ⣺µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨1£©ÀûÓÃ|An-1An|=3|AnAn+1|£¬¼°|A1A2|=9£¬½áºÏµÈ±ÈÊýÁеÄͨÏʽÇóµÃ|AnAn+1|£¬½áºÏµÈ±ÈÊýÁеÄÇóºÍ¹«Ê½£¬¿ÉµÃ|A1A2|+|A2A3|+¡­+|An-1An|£¬´Ó¶øµÃ³öAnµÄ×ø±ê£»È·¶¨{|OBn|}ÊÇÒÔ3
2
ΪÊ×Ï2
2
Ϊ¹«²îµÄµÈ²îÊýÁУ¬¿ÉÇóBnµÄ×ø±ê£»
£¨2£©¢ÙÁ¬½ÓAnBn+1£¬ÉèËıßÐÎAnBnBn+1An+1µÄÃæ»ýΪSn£¬ÔòSn=S¡÷AnAn+1Bn+1+S¡÷BnBn+1An£»
¢Ú¶ÔÓÚ´æÔÚÐÔÎÊÌ⣬¿ÉÏȼÙÉè´æÔÚ£¬¼´¼ÙÉè´æÔÚ²»Í¬µÄÈýÏîSn£¬Sn+1£¬Sn+2£¨n¡ÊN*£©Ç¡ºÃ³ÉµÈ²îÊýÁУ¬´úÈëÇó³ö½á¹û£¬Èô³öÏÖì¶Ü£¬Ôò˵Ã÷¼ÙÉè²»³ÉÁ¢£¬¼´²»´æÔÚ£»·ñÔò´æÔÚ£®
½â´ð£º ½â£º£¨1£©|An-1An|=3|AnAn+1|£¬ÇÒ|A1A2|=10-1=9£¬
¡à|AnAn+1|=|A1A2|(
1
3
)n-1
=9¡Á(
1
3
)n-1
=(
1
3
)n-3
£®
¡à|A1A2|+|A2A3|+¡­+|An-1An|=9+3+1+¡­+(
1
3
)n-4
=
29
2
-
1
2
•(
1
3
)n-4
£¬
¡àAnµÄ×ø±ê£¨0£¬
29
2
-
1
2
•(
1
3
)n-4
£©£¬
¡ß|OBn|-|OBn-1|=2
2
£¨n=2£¬3£¬¡­£©ÇÒ|OB1|=3
2
£¬
¡à{|OBn|}ÊÇÒÔ3
2
ΪÊ×Ï2
2
Ϊ¹«²îµÄµÈ²îÊýÁÐ
¡à|OBn|=3
2
+£¨n-1£©¡Á2
2
=£¨2n+1£©
2
£¬
¡àBnµÄ×ø±êΪ£¨2n+1£¬2n+1£©£®
£¨2£©¢ÙÁ¬½ÓAnBn+1£¬ÉèËıßÐÎAnBnBn+1An+1µÄÃæ»ýΪSn£¬
ÔòSn=S¡÷AnAn+1Bn+1+S¡÷BnBn+1An=
1
2
•£¨
1
3
£©n-3¡Á£¨2n+3£©+
1
2
•2
2
[
29
2
-
1
2
•(
1
3
)n-4
]•
2
2
=
29
2
+
n
3n-3
£®
¢ÚÓÉSn£¬Sn+1£¬Sn+2£¨n¡ÊN*£©Ç¡ºÃ³ÉµÈ²îÊýÁУ¬¿ÉµÃ2£¨
29
2
+
n+1
3n-2
£©=
29
2
+
n
3n-3
+
29
2
+
n+2
3n-1

¡à18£¨n+1£©=27n+3£¨n+2£©£¬¡àn=1£¬
¡à´æÔÚÁ¬ÐøµÄÈýÏîS1£¬S2£¬S3Ç¡ºÃ³ÉµÈ²îÊýÁУ®
µãÆÀ£º±¾Ì⿼²éÊýÁÐÓ뺯ÊýµÄ½áºÏ¡¢µÈ±ÈÊýÁеÄͨÏʽ¡¢µÈ²î¹ØÏµµÄÈ·¶¨µÈ»ù´¡ÖªÊ¶£¬¿¼²éÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ï룮ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔڵȲîÊýÁÐÖÐ{an}ÖУ¬ÒÑÖªa3=0£¬S6=6£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÈôÊýÁÐ{bn}Âú×㣬ÇóÊýÁÐbn=£¨
2
£© anµÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=x|x-2|£¬Ôò²»µÈʽf(
2
-x)¡Üf(1)
µÄ½â¼¯Îª
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÔ²£¨x-a£©2+£¨y+1-r£©2=r2£¨r£¾0£©¹ýµãF£¨0£¬1£©£¬Ô²ÐÄMµÄ¹ì¼£ÎªC£®
£¨¢ñ£©Çó¹ì¼£CµÄ·½³Ì£»
£¨¢ò£©ÉèPΪֱÏßl£ºx-y-2=0Éϵĵ㣬¹ýµãP×öÇúÏßCµÄÁ½ÌõÇÐÏßPA¡¢PB£¬µ±µãP£¨x0£¬y0£©ÎªÖ±ÏßlÉϵ͍µãʱ£¬ÇóÖ±ÏßABµÄ·½³Ì£»
£¨¢ó£©µ±µãPÔÚÖ±ÏßlÉÏÒÆ¶¯Ê±£¬Çó|AF|•|BF|µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚ¼«×ø±êϵÖУ¬Ô²CµÄ·½³ÌΪ¦Ñ=2acos¦È£¬ÒÔ¼«µãÎª×ø±êÔ­µã£¬¼«ÖáΪxÖáµÄÕý°ëÖὨÁ¢Æ½ÃæÖ±½Ç×ø±êϵ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
x=3t+2
y=4t+2
£¨tΪ²ÎÊý£©£¬ÈôÖ±ÏßlÓëÔ²CÏàÇУ¬ÇóʵÊýaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶¨Ò壺min{a1£¬a2£¬a3£¬¡­£¬an}±íʾa1£¬a2£¬a3£¬¡­£¬anÖеÄ×îСֵ£®Èô¶¨Òåf£¨x£©=min{x£¬5-x£¬x2-2x-1}£¬¶ÔÓÚÈÎÒâµÄn¡ÊN*£¬¾ùÓÐf£¨1£©+f£¨2£©+¡­+f£¨2n-1£©+f£¨2n£©¡Ükf£¨n£©³ÉÁ¢£¬Ôò³£ÊýkµÄȡֵ·¶Î§ÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨¼¸ºÎÖ¤Ã÷Ñ¡½²Ñ¡×öÌ⣩Èçͼ£¬¹ý¡ÑOÍâÒ»µãA·Ö±ð×÷ÇÐÏßACºÍ¸îÏßAD£¬CΪÇе㣬D£¬BΪ¸îÏßÓë¡ÑOµÄ½»µã£¬¹ýµãB×÷¡ÑOµÄÇÐÏß½»ACÓÚµãE£®ÈôBE¡ÍAC£¬BE=3£¬AE=4£¬ÔòDB=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ö±Ïß
3
x+y-2=0
ÓëÔ²x2+y2=4ÏཻËùµÃµÄÏҵij¤Îª£¨¡¡¡¡£©
A¡¢2
15
B¡¢2
3
C¡¢
15
D¡¢
3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨1£©½«Ò»¿Å÷»×Ó£¨Õý·½ÌåÐÎ×´£©ÏȺóÅ×ÖÀ2´Î£¬µÃµ½µÄµãÊý·Ö±ð¼ÇΪx£¬y£¬Çóx+y=2 ¼°x+y£¼4µÄ¸ÅÂÊ£»
£¨2£©´ÓÇø¼ä£¨-1£¬1£©ÖÐËæ»úÈ¡Á½¸öÊýx£¬y£¬Çóx2+y2£¼1µÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸