精英家教网 > 高中数学 > 题目详情

【题目】根据下列条件,求圆的方程
(1)求经过两点 ,且圆心在y轴上的圆的方程;
(2)圆的的半径为1,圆心与点(1,0)关于 对称的圆的方程.

【答案】
(1)解:设圆心的坐标为(0,b),由题意知

,解之得 b=1 圆心坐标为(0,1)

∴圆的方程为


(2)解:设圆心坐标为(a,b),由题意得

,圆心坐标为

∴圆的方程为


【解析】本题主要考查了圆的标准方程,解决问题的关键是(1)中求圆的方程采用待定系数法,设出方程,代入条件解方程组即可(2)中求圆的方程主要是确定圆心,根据点的对称性求解圆心坐标,求解时设出圆心,利用对称直线是圆心线的垂直平分线求解圆心
【考点精析】根据题目的已知条件,利用圆的标准方程的相关知识可以得到问题的答案,需要掌握圆的标准方程:;圆心为A(a,b),半径为r的圆的方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|mx|﹣|x﹣n|(0<n<1+m),若关于x的不等式f(x)<0的解集中的整数恰有3个,则实数m的取值范围为(
A.3<m<6
B.1<m<3
C.0<m<1
D.﹣1<m<0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2lnx﹣a(x2﹣1),a∈R,若当x≥1时,f(x)≥0恒成立,则a的取值范围是(
A.(﹣∞,﹣1]
B.(﹣∞,0]
C.(﹣∞,1]
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线y=x+b与曲线 有且只有一个交点,则 的取值范围是 (
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某海滨游乐场出租快艇的收费办法如下:不超过十分钟收费80元;超过十分钟,超过部分按每分钟10元收费(对于其中不足一分钟的部分,若小于0.5分钟则不收费,若大于或等于0.5分钟则按一分钟收费),小茗同学为该游乐场设计了一款收费软件,程序框图如图所示,其中x(分钟)为航行时间,y(元)为所收费用,用[x]表示不大于x的最大整数,则图中①处应填(

A.y=10[x]
B.y=10[x]﹣20
C.y=10[x﹣ ]﹣20
D.y=10[x+ ]﹣20

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来我国电子商务行业迎来蓬勃发展的新机遇,网购成了大众购物的一个重要组成部分,可人们在开心购物的同时,假冒伪劣产品也在各大购物网站频频出现,为了让顾客能够在网上买到货真价实的好东西,各大购物平台也推出了对商品和服务的评价体系,现从某购物网站的评价系统中选出100次成功的交易,并对其评价进行统计,对商品的好评率为 ,对服务的好评率为 ,其中对商品和服务都做出好评的交易为30次.
(1)列出关于商品和服务评价的2×2列联表,并判断是否可以在犯错误概率不超过1%的前提下,认为商品好评与服务好评有关?
(2)若针对商品的好评率,采用分层抽样的方式从这100次交易中取出5次交易,并从中选择两次交易进行客户回访,求只有一次好评的概率.

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(K2= ,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某险种的基本保费为(单位:元),继续购买该险峰种的投保人称为续保人,续保人的本年度的保费与其上处度的出险次数的关联如下:

设该险种一续保人一年内出险次数与相应概率如下:

(1) 求一续保人本年度的保费高于基本保费的概率;

(2) 若一续保人本年度的保费高于基本保费用,求其保费比基本保费高出60%的概率;

(3) 求续保人本年度的平均保费与基本保费的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+ ,g(x)=2x+a,若x1∈[ ,3],x2∈[2,3],使得f(x1)≥g(x2),则实数a的取值范围是(
A.a≤1
B.a≥1
C.a≤0
D.a≥0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱A1B1C1﹣ABC中,AB⊥AC,AB=AC=2,AA1=4,点D是BC的中点.

(1)求异面直线A1B与C1D所成角的余弦值;
(2)求平面ADC1与ABA1所成二面角的正弦值.

查看答案和解析>>

同步练习册答案