精英家教网 > 高中数学 > 题目详情
12.已知a>0,b>0,0<c<2,ac2+b-c=0,则$\frac{1}{a}$+$\frac{1}{b}$的取值范围是[4,+∞).

分析 利用基本不等式的性质即可得出.

解答 解:a>0,b>0,0<c<2,ac2+b-c=0,
∴1=ac+$\frac{b}{c}$≥2$\sqrt{ab}$,当ac=$\frac{b}{c}$时,等号成立,
∴ab≤$\frac{1}{4}$,
∵$\frac{1}{a}$+$\frac{1}{b}$≥2$\sqrt{\frac{1}{ab}}$≥2$\sqrt{4}$=4,当a=b时等号成立,此时c=1∈(0,2),
综上所述,$\frac{1}{a}$+$\frac{1}{b}$的取值范围是[4,+∞),
故答案为:[4,+∞)

点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知A={y|y=x${\;}^{\frac{1}{2}}$,0≤x≤1},B={y|y=kx+1,x∈A},若A⊆B,则实数k的取值范围为(  )
A.k=-1B.k<-1C.-1≤k≤1D.k≤-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)(x∈R)是奇函数,函数g(x)(x∈R)是偶函数,则(  )
A.函数f(x)-g(x)是奇函数B.函数f(x)•g(x)是奇函数
C.函数f[g(x)]是奇函数D.g[f(x)]是奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图为某天通过204国道某测速点的汽车时速频率分布直方图,则通过该测速点的300辆汽车中时速在[60,80)的汽车大约有150辆.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在三棱锥P-ABC中,PA⊥底面ABC,AB⊥BC,AB=2,AC=PA=4.
(1)求直线PB与平面PAC所成角的正弦值;
(2)求二面角A-PC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.从学号为1~50的高一某班50名学生中随机选取5名同学参加数学测试,采用系统抽样的方法,则所选5名学生的学号可能是(  )
A.3,11,19,27,35B.5,15,25,35,46C.2,12,22,32,42D.4,11,18,25,32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.函数f(x)=x2+ax+3,已知不等式f(x)<0的解集为{x|1<x<3}.
(1)求a;
(2)若不等式f(x)≥m的解集是R,求实数m的取值范围;
(3)若f(x)≥nx对任意的实数x≥1成立,求实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数y=f(x)对任意的x∈(-$\frac{π}{2}$,$\frac{π}{2}$)满足f′(x)cosx+f(x)sinx>0(其中f′(x)是函数f(x)的导函数),则下列不等式成立的是①.
①$\sqrt{2}$f(-$\frac{π}{3}$)<f(-$\frac{π}{4}$)
②$\sqrt{2}$f($\frac{π}{3}$)<f($\frac{π}{4}$)
③f(0)>2f($\frac{π}{3}$)
④f(0)>$\sqrt{2}$f($\frac{π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设i为虚数单位,若a+(a-2)i为纯虚数,则实数a=(  )
A.-2B.0C.1D.2

查看答案和解析>>

同步练习册答案