精英家教网 > 高中数学 > 题目详情
7.在△ABC中,a,b,c分别为角A、B、C所对的边,且满足3=b2-c2,又sinBcosC=2cosBsinC,则边长a的值为3.

分析 利用正弦定理,余弦定理化简已知等式可得3b2=a2+3c2,联立3=b2-c2,即可解得a的值.

解答 解:∵sinBcosC=2cosBsinC,
∴由正弦定理可得:bcosC=2ccosB,
结合余弦定理可得:b•$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=2c•$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$,
∴整理可得:3b2=a2+3c2
又∵3=b2-c2
∴联立解得:a2=9,即a=3.
故答案为:3.

点评 本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源:2017届安徽合肥一中高三上学期月考一数学(理)试卷(解析版) 题型:解答题

已知函数.

(1)若,求函数处切线方程;

(2)讨论函数的单调区间.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年河北正定中学高二上月考一数学(文)试卷(解析版) 题型:选择题

设集合,则等于( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年河北正定中学高二上月考一数学(理)试卷(解析版) 题型:选择题

观察下列散点图,其中两个变量的相关关系判断正确的是( )

A. 为正相关, 为负相关, 为不相关

B. 为负相关, 为不相关, 为正相关

C. 为负相关, 为正相关, 为不相关

D. 为正相关, 为不相关, 为负相关

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆E的中心在原点,焦点在坐标轴上,且经过($\sqrt{2},-\frac{\sqrt{2}}{2}$)与(1,$\frac{\sqrt{3}}{2}$)两点.
(Ⅰ)求E的方程;
(Ⅱ)设直线l:y=kx+m(k≠0,m>0)与E交于P,Q两点,且以PQ为对角线的菱形的一顶点为(-1,0),求△OPQ面积的最大值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.对部分4G手机用户每日使用流量(单位:M)进行统计,得到如下记录:
流量x0≤x<55≤x<1010≤x<1515≤x<2020≤x<25x≥25
频率0.050.250.300.250.150
将手机日使用的流量统计到各组的频率视为概率,并假设每天手机的日流量相互独立.
(Ⅰ)求某人在未来连续4天里,有连续3天的手机的日使用流量都不低于15M且另1天的手机日使用流量低于5M的概率;
(Ⅱ)用X表示某人在未来3天时间里手机日使用流量不低于15M的天数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=$\frac{1}{x}$+ax+b,a,b∈R.
(1)若函数y=f(x)-2是奇函数,且在(0,+∞)上的最小值为4,求函数f(x)的解析式;
(2)当a=1时,函数g(x)=2f(x)-x在[$\frac{1}{2}$,2]上有两个不同的零点,求实数b的最小值;
(3)设F(x)=|f(x)|,对任意的实数b,都存在实数x0∈[$\frac{1}{2}$,2],使得F(x)$≥\frac{1}{2}$恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{OA}=(2,0),\overrightarrow{OC}=\overrightarrow{AB}=(0,1)$,其中O为坐标原点,动点M到定直线y=1的距离等于d,并且满足$\overrightarrow{OM}•\overrightarrow{AM}=k(\overrightarrow{CM}•\overrightarrow{BM}-{d^2}),k$为非负实数
(1)求动点M的轨迹C1的方程
(2)若将曲线C1向左平移一个单位得到曲线C2,试指出C2为何种类型的曲线;
(3)若0<k<1,F1、F2是(2)中曲线C2的两个焦点,当点P在C2上运动时,求∠F1PF2取得最大值时对应点P的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,点P是椭圆上任意一点,F1、F2分别是椭圆的左右焦点,△PF1F2的面积最大值为$\sqrt{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)从圆x2+y2=16上一点P向椭圆C引两条切线,切点分别为A,B,当直线AB分别与x轴、y轴交于M、N两点时,求|MN|的最小值.

查看答案和解析>>

同步练习册答案