分析 利用∠ADB+∠ADC=π,结合余弦定理先求出BC长,再次利用余弦定理即可求得cosA的值.
解答
解:在△ABC中,∵∠ADB+∠ADC=π,
∴cos∠ADB=-cos∠ADC,
∴由余弦定理可得:$\frac{A{D}^{2}+B{D}^{2}-B{A}^{2}}{2•AD•BD}$=-$\frac{A{D}^{2}+C{D}^{2}-A{C}^{2}}{2•AD•CD}$,
∵c=2,b=3且BC边上的中线AD=2.
∴解得:BD=CD=$\frac{\sqrt{10}}{2}$,可得:BC=$\sqrt{10}$,
∴cosA=$\frac{A{B}^{2}+A{C}^{2}-B{C}^{2}}{2AB•AC}$=$\frac{4+9-10}{2×2×3}$=$\frac{1}{4}$.
点评 本题主要考查了诱导公式,余弦定理在解三角形中的应用,考查了数形结合思想和转化思想,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2013 | B. | -2014 | C. | 2016 | D. | -2015 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | -4 | C. | -1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{12}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com