精英家教网 > 高中数学 > 题目详情
15.平面向量$\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(-2,x),若$\overrightarrow{a}$与$\overrightarrow{b}$共线,则x等于(  )
A.4B.-4C.-1D.2

分析 根据平面向量的共线定理,列出方程即可求出x的值.

解答 解:平面向量$\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(-2,x),
当$\overrightarrow{a}$与$\overrightarrow{b}$共线时,1•x-(-2)×(-2)=0,
解得x=4.
故选:A.

点评 本题考查了平面向量共线定理的坐标表示与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的一段图象如图所示.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调增区间;
(3)求函数f(x)在[-$\frac{3π}{8}$,$\frac{π}{4}$]上的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(x,-1),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则x等于(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.数列{an}定义为a1>0,a11=a,an+1=an+$\frac{1}{2}$an2,n∈N*
(1)若a1=$\frac{a}{1+2a}$(a>0),求$\frac{1}{{2+{a_1}}}$+$\frac{1}{{2+{a_2}}}$+…+$\frac{1}{{2+{a_{10}}}}$的值;
(2)当a>0时,定义数列{bn},b1=ak(k≥12),bn+1=-1+$\sqrt{1+2{b_n}}$,是否存在正整数i,j(i≤j),使得bi+bj=a+$\frac{1}{2}$a2+$\sqrt{1+2a}$-1.如果存在,求出一组(i,j),如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,a2+b2=c2+ab,且cosAcosB=$\frac{1}{4}$,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.△ABC中,a,b,c分别为角A,B,C所对的边,又c=2,b=3且BC边上的中线AD=2.求:cosA及边BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.一个口袋中装有大小和质地都相同的3个红球、3个白球和2个黑球.
(1)从袋中取出3个球,求取出的球恰有两种颜色的概率;
(2)若取一个红球记3分,取一个白球记2分,取一个黑球记1分,现从袋中任取3个球,求总分不小于6分的概率;
(3)依次不放回的从口袋中取球,每次任取1个,直到取出所有的黑球就停止取球,求停止取球时,口袋中至少有3个球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在长方体ABCD-A1B1C1D1中,AA1=$\sqrt{2}$,AB=1,AD=m(m>0),E为BC的中点,且∠A1ED=90°
(1)求异面直线A1E与CD所成角的大小;
(2)若点M满足$\overrightarrow{BM}$=$\frac{1}{2}$$\overrightarrow{M{B}_{1}}$,问:是否存在实数λ,使$\overrightarrow{AN}$=λ$\overrightarrow{AD}$,MN∥平面A1ED同时成立?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.数列{an}满足an+1=$\left\{\begin{array}{l}{2{a}_{n}(0≤{a}_{n}≤1)}\\{{a}_{n}-1({a}_{n}>1)}\end{array}\right.$且a1=$\frac{6}{7}$,则a20=$\frac{3}{7}$.

查看答案和解析>>

同步练习册答案