精英家教网 > 高中数学 > 题目详情
6.已知$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(x,-1),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则x等于(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

分析 利用向量共线定理即可得出.

解答 解:∵$\overrightarrow{a}$∥$\overrightarrow{b}$,
∴2x-(-1)×(-1)=0,
解得x=$\frac{1}{2}$.
故选:C.

点评 本题考查了向量共线定理、坐标运算性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知f(α)=$\frac{{sin(π-α)cos(2π-α)sin(-α+\frac{3π}{2})}}{{sin(\frac{π}{2}+α)sin(-π-α)}}$.
(1)化简f(α);
(2)若α是第三象限角,且cos(α-$\frac{3π}{2}$)=$\frac{1}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若复数z满足$\frac{z}{2+i}$=i2015+i2016(i为虚数单位),则|z|=$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow a$=(2,1),$\overrightarrow b$=(x,2),若$\overrightarrow a$∥$\overrightarrow b$,则$\overrightarrow a$+$\overrightarrow b$等于(  )
A.(3,3)B.(6,3)C.(1,3)D.(-3,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.△ABC的内角A,B,C所对的边分别为a,b,c.已知$\sqrt{3}$bcosA=asinB.
(Ⅰ)求A;
(Ⅱ)若a=$\sqrt{7}$,b=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.三角形ABC的三内角A,B,C所对边的长分别为a,b,c设向量$\overrightarrow p$=(a+c,b),$\overrightarrow q$=(b-a,c-a),若$\overrightarrow p$∥$\overrightarrow{q}$,角A=$\frac{π}{6}$,则角B的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.等差数列{an}中,a5=3,a23=3a7
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=$\frac{1}{{n{a_n}}}$,求数列{bn}}的前n项和{Sn}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.平面向量$\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(-2,x),若$\overrightarrow{a}$与$\overrightarrow{b}$共线,则x等于(  )
A.4B.-4C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知在数列{an}中,an+1=2an+3•2n+1,且a1=2,则数列{an}的通项公式为an=(3n-2)×2n

查看答案和解析>>

同步练习册答案