分析 由an+1=2an+3•2n+1,变形为$\frac{{a}_{n+1}}{{2}^{n+1}}$-$\frac{{a}_{n}}{{2}^{n}}$=3,利用等差数列的通项公式即可得出.
解答 解:∵an+1=2an+3•2n+1,
∴$\frac{{a}_{n+1}}{{2}^{n+1}}$-$\frac{{a}_{n}}{{2}^{n}}$=3,
∴数列$\{\frac{{a}_{n}}{{2}^{n}}\}$是等差数列,首项为1,公差为3.
∴$\frac{{a}_{n}}{{2}^{n}}$=1+3(n-1)=3n-2.
∴an=(3n-2)×2n.
故答案为:an=(3n-2)×2n.
点评 本题考查了等差数列的通项公式、递推关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | -2 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com