精英家教网 > 高中数学 > 题目详情
11.已知f(x)=$\frac{1}{2}$x2-$\frac{1}{3}$ex3,g(x)=f(x)+ex(x-1)
(1)求函数f(x)极值;
(2)$h(x)=\frac{g'(x)}{x}$,求h(x)最小值
(3)求g(x)单调区间,
(4)求证:x>0时,不等式g′(x)≥1+lnx.

分析 (1)求出导数,令它大于0,得增区间,令小于0,得减区间,判断极小值和极大值;
(2)求出h(x)的表达式,得到h(x)的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可;
(3)写出g(x)的表达式,求导数,得到g′(x)=x(ex+1-ex),令y=ex+1-ex,应用导数证明y>0恒成立,再解不等式g′(x)>0,g′(x)<0求出单调区间;
(4)当x>0时,令h(x)=1+lnx+ex2-x-exx,求出导数h′(x),当x=1时,h′(x)=0,由(Ⅱ)得,ex-ex≥0,讨论当x>1时,当0<x<1时,导数的符号,从而得到h(x)的最大值,即可得证.

解答 解:(1)函数f(x)=$\frac{1}{2}$x2-$\frac{1}{3}$ex3
f′(x)=x-ex2=x(1-ex),
f′(x)>0得0<x<$\frac{1}{e}$;f′(x)<0得x>$\frac{1}{e}$或x<0.
则f(x)在x=0处取极小值,且为f(0)=0,
f(x)在x=$\frac{1}{e}$处取极大值,且为f($\frac{1}{e}$)=$\frac{1}{{6e}^{2}}$.
(2)f(x)=$\frac{1}{2}$x2-$\frac{1}{3}$ex3
∴g(x)=f(x)+ex(x-1)=$\frac{1}{2}$x2-$\frac{1}{3}$ex3+ex(x-1),
g′(x)=x-ex2+ex(x-1)+ex
则g′(x)=x(ex+1-ex),
∴$h(x)=\frac{g'(x)}{x}$=(ex+1-ex),
h′(x)=ex-e,令h′(x)>0,解得:x>1,令h′(x)<0,解得:x<1,
∴h(x)在(-∞,1)递减,在(1,+∞)递增,
∴h(x)最小值=h(1)=1;
(3)由(2)得:
g(x)=f(x)+ex(x-1)=$\frac{1}{2}$x2-$\frac{1}{3}$ex3+ex(x-1),
g′(x)=x-ex2+ex(x-1)+ex
则g′(x)=x(ex+1-ex),令y=ex+1-ex,则y′=ex-e,y′>0,得x>1,
y′<0,得x<1,则x=1取极小,也是最小,
则y≥1.即ex+1-ex>0恒成立,
则g′(x)>0得x>0;g′(x)<0得x<0.
故g(x)的增区间为(0,+∞),减区间为(-∞,0).
(4)证明:当x>0时,1+lnx-g′(x)=1+lnx+ex2-x-exx,
令h(x)=1+lnx+ex2-x-exx,
h′(x)=$\frac{1}{x}$+2ex-1-exx-ex
当x=1时,h′(x)=0,由(Ⅱ)得,ex-ex≥0,
当x>1时,h′(x)<0,当0<x<1时,h′(x)>0,
故x=1为极大值,也为最大值,且为h(1)=0.
故当x>0时,h(x)≤h(1),即有h(x)≤0,
故当x>0时,1+lnx-g′(x)≤0,即g′(x)≥1+lnx.

点评 本题考查导数的应用:求单调区间、求极值,求最值,考查构造函数证明不等式恒成立问题,转化为求函数的最值问题,应用导数求解,本题属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知在数列{an}中,an+1=2an+3•2n+1,且a1=2,则数列{an}的通项公式为an=(3n-2)×2n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.下列命题中,正确命题的序号是②④
①若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$;②若$\overrightarrow{a}$=$\overrightarrow{b}$,则$\overrightarrow{a}$∥$\overrightarrow{b}$;③若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$=$\overrightarrow{b}$;④若$\overrightarrow{a}$=$\overrightarrow{b}$,$\overrightarrow{b}$=$\overrightarrow{c}$,则$\overrightarrow{a}$=$\overrightarrow{c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow{a}$=(cos$\frac{3}{2}$x,sin$\frac{3}{2}$x),$\overrightarrow{b}$=(-sin$\frac{x}{2}$,-cos$\frac{x}{2}$)其中x∈[$\frac{π}{2}$,π],若|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=lnx+x2+ax,x=1是函数f(x)的极值点.
(1)求实数a的值,并求函数f(x)的单调递减区间;
(2)设函数g(x)=f(x)-x2+3x,求证:当x≥2时,g(x)<$\frac{1}{4}$(x2-1);
(3)在(2)的条件下,求证:对n∈N*,$\sum_{k=2}^{n+1}$$\frac{1}{g(k)}$>$\frac{3{n}^{2}+5n}{(n+1)(n+2)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=\frac{x+1}{e^x}$,g(x)=xf(x)+(1-tx)e-x,t∈R
(1)求函数f(x)的极大值;
(2)若存在a,b,c∈[0,1]满足g(a)+g(b)<g(c),求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax3+bx2的图象经过点M(1,4),且在x=-2取得极值.
(1)求实数a,b的值;
(2)若函数f(x)在区间(m,m+1)上单调递增,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{1}{3}$x3-ax+2,f′(0)=-4.
(1)求a的值;
(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设随机变量ξ的概率分布列为P(ξ=k)=a($\frac{1}{3}$)k,其中k=0,1,2,那么a的值为(  )
A.$\frac{3}{5}$B.$\frac{27}{13}$C.$\frac{9}{19}$D.$\frac{9}{13}$

查看答案和解析>>

同步练习册答案