精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=$\frac{1}{3}$x3-ax+2,f′(0)=-4.
(1)求a的值;
(2)求函数f(x)的极值.

分析 (1)求出函数的导数,根据f′(0)=-4,解出a的值即可;(2)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可.

解答 解:(1)f(x)=$\frac{1}{3}$x3-ax+2,
∴f′(x)=x2-a,
由f′(0)=-4,得:f′(0)=0-a=-4,
解得:a=4;
(2)由(1)得:f(x)=$\frac{1}{3}$x3-4x+2,
f′(x)=x2-4,
令f′(x)>0,解得:x>2或x<-2,
令f′(x)<0,解得:-2<x<2,
∴f(x)在(-∞,-2)递增,在(-2,2)递减,在(2,+∞)递增,
∴f(x)极大值=f(-2)=$\frac{22}{3}$,f(x)极小值=f(2)=-$\frac{10}{3}$.

点评 本题考查了函数的单调性、极值问题,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.数列{an}满足an+1=$\left\{\begin{array}{l}{2{a}_{n}(0≤{a}_{n}≤1)}\\{{a}_{n}-1({a}_{n}>1)}\end{array}\right.$且a1=$\frac{6}{7}$,则a20=$\frac{3}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=$\frac{1}{2}$x2-$\frac{1}{3}$ex3,g(x)=f(x)+ex(x-1)
(1)求函数f(x)极值;
(2)$h(x)=\frac{g'(x)}{x}$,求h(x)最小值
(3)求g(x)单调区间,
(4)求证:x>0时,不等式g′(x)≥1+lnx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若函数f(x)=ex-ax存在大于零的极值点,则实数a的取值范围为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数f(x)=ax2+ex(a∈R)有且仅有一个极值点,则实数a的取值范围是(0,+∞)∪{-$\frac{e}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.f(x)=$\frac{{{x^2}-a}}{x+1}$的一个极值点为x=1,则a=(  )
A.-3B.-1C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=kxlnx(k≠0)有极小值$-\frac{1}{e}$.
(1)求实数k的值;
(2)设函数g(x)=x-2ex-1,证明:当x>0时,exf(x)>g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=lnx+ax2-(2a+1)x,其中a≠0.
(Ⅰ)当a=2时,求f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)当a>0时,判断函数f(x)零点的个数.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列说法中,正确的有(  )
①用反证法证明命题“a,b∈R,方程x3+ax+b=0至少有一个实根”时,要作的假设是“方程至多有两个实根”;
②用数学归纳法证明“1+2+22+…+2n+2=2n+3-1,在验证n=1时,左边的式子是1+2+22
③用数学归纳法证明$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{n+n}$>$\frac{13}{24}$(n∈N*)的过程中,由n=k推导到n=k+1时,左边增加的项为$\frac{1}{2n+1}$+$\frac{1}{2n+2}$,没有减少的项;
④演绎推理的结论一定正确;
⑤要证明“$\sqrt{7}$-$\sqrt{3}$>$\sqrt{6}$-$\sqrt{2}$”的最合理的方法是分析法.
A.①④B.C.②③⑤D.

查看答案和解析>>

同步练习册答案