分析 利用递推关系可得数列的周期性,即可得出.
解答 解:∵an+1=$\left\{\begin{array}{l}{2{a}_{n}(0≤{a}_{n}≤1)}\\{{a}_{n}-1({a}_{n}>1)}\end{array}\right.$且a1=$\frac{6}{7}$,
∴a2=2a1=$\frac{12}{7}$,a3=a2-1=$\frac{5}{7}$,a4=2a3=$\frac{10}{7}$,a5=a4-1=$\frac{3}{7}$,a6=2a5=$\frac{6}{7}$=a1,
∴an+5=an.
则a20=a5×3+5=a5=$\frac{3}{7}$.
故答案为:$\frac{3}{7}$.
点评 本题考查了递推关系、数列的周期性,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | -4 | C. | -1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-4)∪(4,+∞) | B. | (-4,4) | C. | (-∞,-3)∪(3,+∞) | D. | (-3,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com