分析 (1)将M的坐标代入f(x)的解析式,得到关于a,b的一个等式;求出导函数,根据f′(1)=-2,列出关于a,b的另一个等式,解方程组,求出a,b的值.
(2)求出 f′(x),令f′(x)>0,求出函数的单调递增区间,据题意知(m,m+1)⊆(-∞,-2]∪[0,+∞),列出端点的大小,求出m的范围.
解答 解:(1)∵f(x)=ax3+bx2的图象经过点M(1,4),
∴a+b=4 ①式
f′(x)=3ax2+2bx,
则f′(-2)=0,即-6a+2b=0 ②式
由①②式解得a=1,b=3;
(2)f(x)=x3+3x2,f′(x)=3x2+6x,
令f'(x)=3x2+6x≥0得x≥0或x≤-2,
∵函数f(x)在区间(m,m+1)上单调递增
∴(m,m+1)⊆(-∞,-2]∪[0,+∞)
∴m≥0或m+1≤-2
∴m≥0或m≤-3.
点评 注意函数在切点处的导数值是曲线的切线斜率;属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}+1}{2}$ | B. | $\frac{\sqrt{3}-1}{2}$ | C. | $\frac{\sqrt{5}+1}{2}$ | D. | $\frac{\sqrt{5}-1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com