精英家教网 > 高中数学 > 题目详情
9.从1,2,3,4,5五个数中任取一个数,则这个数是奇数的概率是$\frac{3}{5}$.

分析 从1,2,3,4,5这5个数字中,奇数有3个,根据概率公式计算即可.

解答 解:从1,2,3,4,5这5个数字中,奇数有3个,
∴这个数是奇数的概率是p=$\frac{3}{5}$,
故答案为:$\frac{3}{5}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.设S={x|x=m+n$\sqrt{2}$,m,n∈Z}
(1)若a∈Z,则是否a∈S?
(2)对S中的任意两个元素x1,x2,是否都有x1+x2∈S,x1•x2∈S成立?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知曲线$\frac{|x|}{2}$-$\frac{|y|}{3}$=1与直线y=2x+m有两个交点,则m的取值范围是(  )
A.(-∞,-4)∪(4,+∞)B.(-4,4)C.(-∞,-3)∪(3,+∞)D.(-3,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.下列命题中,正确命题的序号是②④
①若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$;②若$\overrightarrow{a}$=$\overrightarrow{b}$,则$\overrightarrow{a}$∥$\overrightarrow{b}$;③若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$=$\overrightarrow{b}$;④若$\overrightarrow{a}$=$\overrightarrow{b}$,$\overrightarrow{b}$=$\overrightarrow{c}$,则$\overrightarrow{a}$=$\overrightarrow{c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数列{an}的前n项的和Sn满足Sn=2n-1(n∈N*),则数列{anan+1}的前n项的和为$\frac{{2}^{2n+1}-2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow{a}$=(cos$\frac{3}{2}$x,sin$\frac{3}{2}$x),$\overrightarrow{b}$=(-sin$\frac{x}{2}$,-cos$\frac{x}{2}$)其中x∈[$\frac{π}{2}$,π],若|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=lnx+x2+ax,x=1是函数f(x)的极值点.
(1)求实数a的值,并求函数f(x)的单调递减区间;
(2)设函数g(x)=f(x)-x2+3x,求证:当x≥2时,g(x)<$\frac{1}{4}$(x2-1);
(3)在(2)的条件下,求证:对n∈N*,$\sum_{k=2}^{n+1}$$\frac{1}{g(k)}$>$\frac{3{n}^{2}+5n}{(n+1)(n+2)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax3+bx2的图象经过点M(1,4),且在x=-2取得极值.
(1)求实数a,b的值;
(2)若函数f(x)在区间(m,m+1)上单调递增,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)当x<$\frac{3}{2}$时,求函数y=x+$\frac{8}{2x-3}$的最大值;
(2)设0<x<2,求函数y=$\sqrt{x(4-2x)}$的最大值.

查看答案和解析>>

同步练习册答案