分析 由a2+b2=c2+ab,用余弦定理可求出C角,由已知及三角形内角和定理,两角和与差的余弦函数公式可求cos(A-B)=1,结合范围-π<A-B<π,从而解得A=B=60°=C,即可判断三角形的形状.
解答 解:在△ABC中,由余弦定理,得c2=a2+b2-2abcosC.
∵a2+b2=c2+ab,
∴ab-2abcosC=0.
∴cosC=$\frac{1}{2}$,
∴结合C为三角形内角,可得:C=60°,
∵cosAcosB=$\frac{1}{4}$,
∵cos(A+B)=cos(180°-C)=cos120°=-$\frac{1}{2}$,
∴cos(A+B)=cosAcosB-sinAsinB=$\frac{1}{4}$-sinAsinB=-$\frac{1}{2}$,
∴sinAsinB=$\frac{3}{4}$.
∴cos(A-B)=cosAcosB+sinAsinB=1.
∵-π<A-B<π,
∴A-B=0.
∴A=B=60°=C,
故:△ABC为等边三角形.
点评 本题主要考查了余弦定理,三角形内角和定理,两角和与差的余弦函数公式在解三角形中的应用,考查了转化思想,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | -4 | C. | -1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-4)∪(4,+∞) | B. | (-4,4) | C. | (-∞,-3)∪(3,+∞) | D. | (-3,3) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com