精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=sin(2x+ )﹣ cos(2x+ ).
(1)数的单调增区间;
(2)若f(α)= ,α∈(0, ),求cosα的值.

【答案】
(1)解:f(x)= =2sin2x

∴函数y=sinX的单调增区间为

∴由 ≤2x≤ ,k∈Z

≤x≤ ,k∈Z,

∴函数的单调增区间:[ ],k∈Z,


(2)解法1:

,故

解法2:

又sin2α+cos2α=1

消去sinα,得

解得

从而 ,或 ,)

因为 ,所以


【解析】(1)由三角函数性质化简得到f(x)=2sin2x,由此能求出函数的单调增区间.(2)法1:由f(α)=2sin2α= ,得到sin2α= ,由此先求出cos2α,再由 ,能求出cosα.法2:由f(α)=2sin2α= ,得到sin2α= ,由此利用二倍角公式和同角三角函数间的关系式得 ,再由 ,能求出cosα.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的导函数f′(x)是二次函数,如图是f′(x)的大致图象,若f(x)的极大值与极小值的和等于 ,则f(0)的值为( )

A.0
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系已知椭圆的左焦点为离心率为过点且垂直于长轴的弦长为

(1)求椭圆的标准方程;

(2)设点分别是椭圆的左、右顶点若过点的直线与椭圆相交于不同两点

求证:

面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】实验杯足球赛采用七人制淘汰赛规则,某场比赛中一班与二班在常规时间内战平,直接进入点球决胜环节,在点球决胜环节中,双方首先轮流罚点球三轮,罚中更多点球的球队获胜;若双方在三轮罚球中未分胜负,则需要进行一对一的点球决胜,即双方各派处一名队员罚点球,直至分出胜负;在前三轮罚球中,若某一时刻胜负已分,尚未出场的队员无需出场罚球(例如一班在先罚球的情况下,一班前两轮均命中,二班前两轮未能命中,则一班、二班的第三位同学无需出场).由于一班同学平时踢球热情较高,每位队员罚点球的命中率都能达到0.8,而二班队员的点球命中串只有0.5,比赛时通过抽签决定一班在每一轮都先罚球.

(1)定义事件为“一班第三位同学没能出场罚球”,求事件发生的概率;

(2)若两队在前三轮点球结束后打平,则进入一对一点球决胜,一对一球决胜由没有在之前点球大战中出场过的队员主罚点球,若在一对一点球决胜的某一轮中,某对队员射入点球且另一队员未能射入,则比赛结束;若两名队员均射入或者均射失点球,则进行下一轮比赛. 若直至双方场上每名队员都已经出场罚球,则比赛亦结束,双方通过抽签决定胜负,本场比赛中若已知双方在点球大战,以随机变量记录双方进行一对一点球决胜的轮数,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的导函数f'(x)满足2f(x)+xf′(x)>x2(x∈R),则对x∈R都有(
A.x2f(x)≥0
B.x2f(x)≤0
C.x2[f(x)﹣1]≥0
D.x2[f(x)﹣1]≤0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,若2sinA+sinB= sinC,则角A的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“数列{an}成等比数列”是“数列{lgan+1}成等差数列”的(
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】实验杯足球赛采用七人制淘汰赛规则,某场比赛中一班与二班在常规时间内战平,直接进入点球决胜环节,在点球决胜环节中,双方首先轮流罚点球三轮,罚中更多点球的球队获胜;若双方在三轮罚球中未分胜负,则需要进行一对一的点球决胜,即双方各派处一名队员罚点球,直至分出胜负;在前三轮罚球中,若某一时刻胜负已分,尚未出场的队员无需出场罚球(例如一班在先罚球的情况下,一班前两轮均命中,二班前两轮未能命中,则一班、二班的第三位同学无需出场).由于一班同学平时踢球热情较高,每位队员罚点球的命中率都能达到0.8,而二班队员的点球命中串只有0.5,比赛时通过抽签决定一班在每一轮都先罚球.

(1)定义事件为“一班第三位同学没能出场罚球”,求事件发生的概率;

(2)若两队在前三轮点球结束后打平,则进入一对一点球决胜,一对一球决胜由没有在之前点球大战中出场过的队员主罚点球,若在一对一点球决胜的某一轮中,某对队员射入点球且另一队员未能射入,则比赛结束;若两名队员均射入或者均射失点球,则进行下一轮比赛. 若直至双方场上每名队员都已经出场罚球,则比赛亦结束,双方通过抽签决定胜负,本场比赛中若已知双方在点球大战,以随机变量记录双方进行一对一点球决胜的轮数,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017福建三明5月质检】已知函数

(Ⅰ)当时,求证:过点有三条直线与曲线相切;

(Ⅱ)当时, ,求实数的取值范围.

查看答案和解析>>

同步练习册答案