已知,函数
(1)求曲线在点处的切线方程; (2)当时,求的最大值.
(1),(2)
解析试题分析:(1)导数几何意义即切线的斜率;(2)求导数,列表判断单调性,分情况讨论.
科目:高中数学
来源:
题型:解答题
如图,某自来水公司要在公路两侧排水管,公路为东西方向,在路北侧沿直线排,在路南侧沿直线排,现要在矩形区域内沿直线将与接通.已知,,公路两侧排管费用为每米1万元,穿过公路的部分的排管费用为每米2万元,设与所成的小于的角为.
科目:高中数学
来源:
题型:解答题
已知函数f(x)=x-ax+(a-1),.
科目:高中数学
来源:
题型:解答题
已知函数的导函数是,在处取得极值,且.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
试题解析:(Ⅰ)由已知得:,且
,所以所求切线方程为:,
即为:;
(Ⅱ)由已知得到:,其中,当时,,
(1)当时,,所以在上递减,所以,因为;
(2)当,即时,恒成立,所以在上递增,所以
,因为
;
(3)当,即时,
,且,即2 + 0 - 0 +
(Ⅰ)求矩形区域内的排管费用关于的函数关系式;
(Ⅱ)求排管的最小费用及相应的角.
(1)讨论函数的单调性;(2)若,设,
(ⅰ)求证g(x)为单调递增函数;
(ⅱ)求证对任意x,x,xx,有.
(Ⅰ)求的极大值和极小值;
(Ⅱ)记在闭区间上的最大值为,若对任意的总有成立,求的取值范围;
(Ⅲ)设是曲线上的任意一点.当时,求直线OM斜率的最小值,据此判断与的大小关系,并说明理由.
版权声明:本站所有文章,图片来源于网络,著作权及版权归原作者所有,转载无意侵犯版权,如有侵权,请作者速来函告知,我们将尽快处理,联系qq:3310059649。
ICP备案序号: 沪ICP备07509807号-10 鄂公网安备42018502000812号