精英家教网 > 高中数学 > 题目详情
3.若数列{an}满足:a1=2,an+1=$\frac{{a}_{n}-1}{{a}_{n}}$,则a7等于(  )
A.2B.$\frac{1}{2}$C.-1D.2018

分析 利用数列的递推关系式,逐步求解即可.

解答 解:数列{an}满足:a1=2,an+1=$\frac{{a}_{n}-1}{{a}_{n}}$,则a2=$\frac{2-1}{2}$=$\frac{1}{2}$,
a3=$\frac{\frac{1}{2}-1}{\frac{1}{2}}$=-1
a4=$\frac{-1-1}{-1}$=2
a5=$\frac{2-1}{2}$=$\frac{1}{2}$,
a6=$\frac{\frac{1}{2}-1}{\frac{1}{2}}$=-1.
a7=$\frac{-1-1}{-1}$=2.
故选:A.

点评 本题考查数列的递推关系式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2$\sqrt{2}$,|$\overrightarrow{a}$+$\overrightarrow{b}$|=2$\sqrt{3}$,$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ln2(x-1)-$\frac{1}{x-1}$-x+3.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若当x≥1时,不等式(x+1)x+m≤exx+m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设计人员要用10米长的材料(材料的宽度不计)建造一个窗子的边框,如图所示,窗子是由一个矩形ABCD和以AD为直径的半圆组成,窗子的边框不包括矩形的AD边,设半圆的半径为OA=r(米),窗子的透光面积为S(平方米).
(1)r为何值时,S有最大值?
(2)窗子的半圆部分采用彩色玻璃,每平方米造价为300元,窗子的矩形部分均采用透明玻璃,每平方米造价为100元,r=1时,900元的造价够用吗?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知抛物线y2=4x,过焦点F的直线与抛物线交于A、B两点,过A,B分别作x轴,y轴垂线,垂足分别为C、D,则|AC|+|BD|的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),与双曲线C2:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)相交于A、B、C、D四点,若双曲线C1的一个焦点为F(-$\sqrt{2}$,0),且四边形ABCD的面积为$\frac{16}{3}$,则双曲线C1的离心率为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若$a=2\int_{-3}^3{({x+|x|})dx}$,则在${({\sqrt{x}-\frac{1}{{\root{3}{x}}}})^a}$的展开式中,x的幂指数不是整数的项共有15项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知t∈R,若复数$z=\frac{1-ti}{1+i}$(i为虚数单位)为纯虚数,则$|{\sqrt{3}+ti}|$=(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.将函数f(x)的图象向左平移$\frac{π}{6}$个单位后得到函数g(x)的图象如图所示,则函数f(x)的解析式是(  )
A.$f(x)=sin({2x-\frac{π}{6}})$(x∈R)B.$f(x)=sin({2x+\frac{π}{6}})$(x∈R)C.$f(x)=sin({2x-\frac{π}{3}})$(x∈R)D.$f(x)=sin({2x+\frac{π}{3}})$(x∈R)

查看答案和解析>>

同步练习册答案