精英家教网 > 高中数学 > 题目详情
设F为抛物线y2=2px(p>0)的焦点,A、B、C为该抛物线上三点,当
FA
+
FB
+
FC
=
0
且|FA|+|FB|+|FC|=3时,此抛物线的方程为(  )
A、y2=2x
B、y2=4x
C、y2=6x
D、y2=8x
分析:设向量FA FB FC分别为(x1,y1)(x2,y2)(x3,y3)则可知x1+x2+x3=0,进而表示出A,B,C三点的横坐标,根据抛物线定义可分别表示出|FA|,|FB|和|Fc|,进而根据|FA|+|FB|+|Fc|=3 求得p,则抛物线方程可得.
解答:解:设向量FA FB FC分别为(x1,y1)(x2,y2)(x3,y3) 则x1+x2+x3=0
|FA|+|FB|+|Fc|=3
XA=x1+
p
2
,同理XB=x2+
p
2
,XC=x3+
p
2

|FA|=x2+
p
2
+
p
2
=x2+p
∴x1+x2+x3+3p=3
∴p=1
∴抛物线方程为y2=2x
故选A
点评:本题主要考查了抛物线的标准方程和抛物线定义的运用.涉及了向量的运算,考查了学生综合运用所学知识解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设F为抛物线y2=4x的焦点,A、B为该抛物线上两点,若
FA
+2
FB
=
0
,则|
FA
|+2|
FB
|
等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•成都模拟)设F为抛物线y2=4x的焦点,A、B、C为抛物线上不同的三点,点F是△ABC的重心,O为坐标原点,△OFA、△OFB、△OFC的面积分别为S1、S2、S3,则则S12+S22+S32=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设F为抛物线y2=2x-1的焦点,Q (a,2)为直线y=2上一点,若抛物线上有且仅有一点P满足|PF|=|PQ|,则a的值为
0或1
0或1

查看答案和解析>>

科目:高中数学 来源: 题型:

设F为抛物线y2=4x的焦点,A、B、C为该抛物线上三点,若
FA
+2
FB
+3
FC
=
0
,则|
FA
|+2|
FB
|+3|
FC
|=
 

查看答案和解析>>

科目:高中数学 来源:成都模拟 题型:单选题

设F为抛物线y2=4x的焦点,A、B、C为抛物线上不同的三点,点F是△ABC的重心,O为坐标原点,△OFA、△OFB、△OFC的面积分别为S1、S2、S3,则则S12+S22+S32=(  )
A.9B.6C.3D.2

查看答案和解析>>

同步练习册答案