精英家教网 > 高中数学 > 题目详情
一个抛物线型拱桥,当水面离拱顶2m时,水面宽4m.若水面下降2m,则水面宽度为
 
m.
考点:抛物线的应用
专题:圆锥曲线的定义、性质与方程
分析:如图所示,建立直角坐标系.设抛物线的方程为x2=-2py(p>0).利用当水面离拱顶2m时,水面宽4m.可得B(2,-2).代入抛物线方程可得22=-2p×(-2),
解得p.设D(x,-4),代入抛物线方程即可得出.
解答: 解:如图所示,建立直角坐标系.
设抛物线的方程为x2=-2py(p>0).
∵当水面离拱顶2m时,水面宽4m.
∴B(2,-2).
代入抛物线方程可得22=-2p×(-2),
解得p=1.
∴抛物线的标准方程为:x2=-2y.
设D(x,-4),代入抛物线方程可得x2=-2×(-4),
解得x=±2
2

∴|CD|=4
2

故答案为:4
2
点评:本题考查了抛物线的标准方程及其应用,考查了数形结合的思想方法,考查了计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

棱长为2的正方体ABCDEFGH,I,J,K分别是AB,BC,EF的中点,求
(1)HK的长度;
(2)求△IJK的面积;
(3)求以H为顶点的三棱锥H-IJK的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义函数f(k)表示k的最大奇因数,例如:f(1)=1,f(2)=1,f(3)=3,f(4)=1.
(1)f(1)+f(3)+f(5)+…+f(2n-1)=
 

(2)f(1)+f(2)+f(3)+…+f(2n)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若α,β满足-
π
2
<α<β<
π
2
,则2α-β的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得该几何体的体积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若x∈(0,+∞),则(1+2x)15的二项展开式中系数最大的项为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
|log3x,0<x≤3
1
3
x2-
10
3
x+8,x>3
,若a,b,c,d是互不相同的四个正数,且f(a)=f(b)=f(c)=f(d),则abcd的取值范围是(  )
A、(21,25)
B、(21,24)
C、(20,24)
D、(20,25)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在空间直角坐标系中有长方体ABCD-A1B1C1D1,AB=
2
,BC=
2
2
,AA1=1,E是C1D1的中点,求证:平面AA1E⊥平面BB1E.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}各项均为正数,且满足an+1=an-an2
(Ⅰ)求证:对一切n≥2,都有an
1
n+2

(Ⅱ)已知前n项和为S,求证:对一切n≥2,都有S2n-Sn-1<ln2.

查看答案和解析>>

同步练习册答案