精英家教网 > 高中数学 > 题目详情
已知f(x)=
|log3x,0<x≤3
1
3
x2-
10
3
x+8,x>3
,若a,b,c,d是互不相同的四个正数,且f(a)=f(b)=f(c)=f(d),则abcd的取值范围是(  )
A、(21,25)
B、(21,24)
C、(20,24)
D、(20,25)
考点:分段函数的应用
专题:函数的性质及应用
分析:图象法:画出函数y=f(x)的图象,根据图象分析a,b,c,d的关系及取值范围,从而求出abcd的取值范围.
解答: 解:先画出f(x)=
|log3x,0<x≤3
1
3
x2-
10
3
x+8,x>3
的图象,如图:


∵a,b,c,d互不相同,不妨设a<b<c<d.
且f(a)=f(b)=f(c)=f(d),3<c<4,d>6.
∴-log3a=log3b,c+d=10,
即ab=1,c+d=10,
故abcd=c(10-c)=-c2+10c,由图象可知:3<c<4,
由二次函数的知识可知:-32+10×3<-c2+10c<-42+10×4,
即21<-c2+12c<24,
∴abcd的范围为(21,24).
故选:B.
点评:本题考查了利用函数图象分析解决问题的能力,以及对数函数图象的特点,注意体会数形结合思想在本题中的运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若双曲线
x2
4
-
y2
12
=1上一点P到其左焦点的距离为5,则点P到右焦点的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(sinx,cosx),
b
=(cosx,cosx),x∈R,f(x)=
a
•(
a
+
b
).
(1)求f(x)的解析式;
(2)求f(x)在[-
π
4
π
4
]上的最大值,最小值;
(3)若f(x)=
3
2
10
+
3
2
,求sin4x.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个抛物线型拱桥,当水面离拱顶2m时,水面宽4m.若水面下降2m,则水面宽度为
 
m.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项等比数列{an}的前n项和为Sn,n∈N*,且S2=6,S6=126.
(1)求数列{an}的通项公式;
(2)设cn=
1
log
2
anlog
2
an+1
,数列{cn}的前n项和为Tn,是否存在实数λ,使不等式nTn+1<λ(n+1)(n+2)对任意的正整数n都成立?若存在,求出λ的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

武汉地铁三号线预期2015年底开通,到时江汉二桥的交通压力将大大缓解.已知该车每次拖4节车厢,一日能来回16次,如果每次拖7节车厢,则每日能来回10次.若每日来回的次数是车头每次拖挂车厢节数的一次函数,每节车厢能载乘客110人.问这列火车每天来回多少次才能使运营人数最多?并求出每天最多运营人数.(注:来一次回一次为来回两次).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=an+3n+2,且a1=2,求an

查看答案和解析>>

科目:高中数学 来源: 题型:

PM2.5是指大气中直径小于或等于2.5微米的原粒物,也称可入肺颗粒物,它对空气质量和能见度等有重要影响.近几年,我国气象部门加强了对空气PM2.5含量的监测,如果空气中PM2.5的浓度高于10微克/立方米,则对人的呼吸系统造成危害,长沙市一监测点连续监测了一天中0~12时内PM2.5含量的变化情况,其浓度W(t)(微克/立方米)随时刻t的变化可近似表示如:
W(t)=
5
2
(t-4)2+40,0≤t<6
k(t-6)2-(t-6)+ln[(t-6)+1]+50,6≤t≤12

(1)设k=1,根据目前状况,长沙市PM2.5含量暂定小于或等于50微克/立方米视为达标,求这0~12时内哪些时间段是达标的?
(2)已知k>0,现已知当t∈(6,12]时,PM2.5的浓度始终大于50微克/立方米,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点分别为A(4,0),B(8,10),C(0,6).
(1)求AC边上的高所在的直线方程;
(2)求AC边上的中线所在的直线方程.

查看答案和解析>>

同步练习册答案