精英家教网 > 高中数学 > 题目详情

(本小题满分10分)选修4-4:坐标系与参数方程
已知直线的极坐标方程为,圆的参数方程为
(其中为参数).
(Ⅰ)将直线的极坐标方程化为直角坐标方程;
(Ⅱ)求圆上的点到直线的距离的最小值.

(Ⅰ) (Ⅱ)圆上的点到直线的距离的最小值为

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,曲线C1的参数方程为为参数)曲线C2的参数方程为为参数)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=与C1,C2各有一个交点.当=0时,这两个交点间的距离为2,当=时,这两个交点重合.
(I)分别说明C1,C2是什么曲线,并求出a与b的值;
(II)设当=时,l与C1,C2的交点分别为A1,B1,当=-时,l与C1,C2的交点为A2,B2,求四边形A1A2B2B1的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线C的极坐标方程 是=1,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数)。
(1)写出直线与曲线C的直角坐标方程;
(2)设曲线C经过伸缩变换得到曲线,设曲线上任一点为,求的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)选修4-4:坐标系与参数方程已知极坐标系的极点在直角坐标系的原点处,极轴与轴非负半轴重合.直线的参数方程为:为参数),曲线的极坐标方程为:
(1)写出曲线的直角坐标方程,并指明是什么曲线;
(2)设直线与曲线相交于两点,求的值.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系上取两个定点,再取两个动点 ,且.
(Ⅰ)求直线交点的轨迹的方程;
(Ⅱ)已知点()是轨迹上的定点,是轨迹上的两个动点,如果直线的斜率与直线的斜率满足,试探究直线的斜率是否是定值?若是定值,求出这个定值,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分) 在直角坐标系中,以极点,轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为分别为轴,轴的交点
(1)写出的直角坐标方程,并求出的极坐标
(2)设的中点为,求直线的极坐标方程

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

((本小题满分10分)
选修4—4:坐标系与参数方程
已知直线的参数方程为为参数),曲线C的极坐标方程是,以极点为原点,极轴为轴正方向建立直角坐标系,点,直线与曲线C交于A、B两点.
(1)写出直线的极坐标方程与曲线C的普通方程;
(2) 线段MA,MB长度分别记为|MA|,|MB|,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知极坐标系的极点O与直角坐标系的原点重合,极轴与轴的正半轴重合,曲线与曲线(参数)交于A、B两点,
(1)求证:
(2)求的外接圆的标准方程。

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

如图所示,D、E分别是△ABC的边AB、AC上的点,DE∥BC,且=2,那么△ADE与四边形DBCE的面积比是

A.        B.      C.      D.

查看答案和解析>>

同步练习册答案