精英家教网 > 高中数学 > 题目详情

长方体ABCD—ABCD中,,则点到直线AC的距离是

A.3      B.      C.       D.4

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图在长方体ABCD-A1B1C1D1中,其中AB=BC,E,F分别是AB1,BC1的中点,则以下结论中
①EF与BB1垂直;
②EF⊥平面BCC1B1
③EF与C1D所成角为45°;
④EF∥平面A1B1C1D1
不成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在长方体ABCD-A1B1ClD1中,AB=AD=1,AA1=2,M为BB1上一点,N为CC1上一点
(1)求三棱锥A1-AMN的体积.
(2)当M是BB1的中点时,求证D1M⊥平面MAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知长方体ABCD-A1B1C1D1中,AB=2
3
,AD=2
3
,AA1=2.
求:
①BC和A1C1所成的角度是多少度?
②AA1和B1C1所成的角是多少度?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•深圳二模)如图,已知命题:若矩形ABCD的对角线BD与边AB和BC所成角分别为α,β,则cos2α+cos2β=1,若把它推广到长方体ABCD-A1B1C1D1中,试写出相应命题形式:
长方体ABCD-A1B1C1D1中,对角线BD1与棱AB、BB1、BC所成的角分别为α、β、γ,则cos2α+cos2β+cos2γ=1,或是sin2α+sin2β+sin2γ=2.
长方体ABCD-A1B1C1D1中,对角线BD1与棱AB、BB1、BC所成的角分别为α、β、γ,则cos2α+cos2β+cos2γ=1,或是sin2α+sin2β+sin2γ=2.

查看答案和解析>>

科目:高中数学 来源: 题型:

在长方体ABCD-A1B1C1D1中,AB=BC=2,过A1、C1、B三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD-A1C1D1,且这个几何体的体积为
403

(Ⅰ)求棱A1A的长;
(Ⅱ)自行连接BD,证明:平面A1BC1⊥平面BDD1

查看答案和解析>>

同步练习册答案