精英家教网 > 高中数学 > 题目详情
已知p:(x+2)(x-10)≤0,q:x2-2x+1-m2≤0(m>0),若?p是?q的必要不充分条件,求实数m的取值范围.
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:求出p,q的等价条件,利用充分条件和必要条件的定义建立条件关系即可得到结论.
解答: 解:由(x+2)(x-10)≤0,解得-2≤x≤10,p:-2≤x≤10,
由x2-2x+1-m2≤0(m>0),得[x-(1-m)][x-(1+m)]≤0(m>0),
即1-m≤x≤1+m,
若¬p是¬q的必要不充分条件,
则p是q的充分不必要条件,
1-m≤-2
1+m≥10
,即
m≥3
m≥9
,解得m≥9,
即m的取值范围是m≥9.
点评:本题主要考查充分条件和必要条件的应用,根据不等式的性质求出命题的等价条件是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=4x3-ax2-2bx+2.若f′(1)=4,求:
(Ⅰ)a+b的值;             
(Ⅱ)ab的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x2-4)(x-
1
2
).
(1)求f′(x);
(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)过点(
3
1
2
),离心率e=
3
2

(1)求椭圆的方程:
(2)若直线y=kx+2与椭圆有两个交点,求出k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=3x,tanβ=3-x,α-β=
π
6
,求x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:
(Ⅰ)a2+b2
(a+b)2
2
;       
(Ⅱ)a2+b2≥2(a-b-1).

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,其中正视图和侧视图是腰长为6的两个全等的等腰直角三角形.
(Ⅰ)请画出该几何体的直观图,并求出它的体积;
(Ⅱ)用多少个这样的几何体可以拼成一个棱长为6的正方体ABCD-A1B1C1D1?如何组拼?试证明你的结论;
(Ⅲ)在(Ⅱ)的情形下,设正方体ABCD-A1B1C1D1的棱CC1的中点为E,求平面AB1E与平面ABC所成二面角的余弦值.(改编)

查看答案和解析>>

科目:高中数学 来源: 题型:

(文) 已知三棱锥O-ABC,∠BOC=90°,OA⊥平面BOC,其中OA=1,OB=2,OC=3,O,A,B,C四点均在球S的表面上,则球S的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A,B,C,D的坐标分别为A(1,0),B(0,1),C(cosα,sinα),α∈[0,2π).
(1)若|
AC
|=|
BC
|,求角α的值;
(2)若
AC
AC
=
1
3
,求
2sin2α+2sinαcosα
1+tanα
的值.

查看答案和解析>>

同步练习册答案