精英家教网 > 高中数学 > 题目详情
求证:
(Ⅰ)a2+b2
(a+b)2
2
;       
(Ⅱ)a2+b2≥2(a-b-1).
考点:不等式的证明
专题:不等式的解法及应用,不等式
分析:本题(Ⅰ)可用作差法证明,作差后进行因式分解易证;(Ⅱ)可用作差法证明,作差后进行配方易证.
解答: 解:( I) (a2+b2)-
(a+b)2
2
=-
2(a2+b2)-(a2+2ab+b2)
2
=
a2-2ab+b2
2
=
(a-b)2
2

∵(a-b)2≥0,
(a-b)2
2
≥0

(a2+b2)-
(a+b)2
2
≥0

a2+b2
(a+b)2
2

(II) (a2+b2)-2(a-b-1)=(a2-2a+1)+(b2+2b+1)=(a-1)2+(b+1)2
∵(a-1)2≥0,(b+1)2≥0,∴(a-1)2+(b+1)2≥0,即(a2+b2)-2(a-b-1)≥0,
∴a2+b2≥2(a-b-1).
点评:本题考查的是不等式证明,主要考查作差法,作差后可以因式分解,也可以配方.本题属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

观察墙脚,或直立于桌面上的课本,你会发现一个立体几何问题,由此概括出来一个定理:如果两个相交平面同垂直于第三个平面,那么
 
.请你把上面的定理补充完整,并证之.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x,且f(a+2)=18,g(x)=2•3ax-4x
(1)求函数g(x)的解析式;     
(2)求函数g(x)在x∈[-1,1]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=-x3+3x+2分别在x1、x2处取得极小值、极大值.xoy平面上点A、B的坐标分别为(x1,f(x1))、(x2,f(x2)),该平面上动点P满足
PA
PB
=4,点Q是点P关于直线y=x的对称点.
(Ⅰ)求点A、B的坐标;
(Ⅱ)求动点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:(x+2)(x-10)≤0,q:x2-2x+1-m2≤0(m>0),若?p是?q的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,且a3=3,S7=28,在等比数列{bn}中,b3=4,b4=8,
(1)求an及bn
(2)设数列{an•bn}的前n项和Tn,求T5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a3a4a5=8,a5=1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记bn=log2an,求数列{bn}前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,an+1=2an+1(n∈N*).
(1)计算a2,a3,a4的值,猜想数列{an}的通项公式,并用数学归纳法证明;
(2)若p,q,r是三个互不相等的正整数,且p,q,r成等差数列,试判断ap,aq,ar是否成等比数列?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin2θ+6cos2θ=2,且θ∈(0,
3
)
,则tanθ=
 

查看答案和解析>>

同步练习册答案