精英家教网 > 高中数学 > 题目详情
AB
BC
+
AB2
=0,则△ABC为(  )
A、直角三角形
B、钝角三角形
C、锐角三角形
D、等腰三角形
考点:三角形的形状判断
专题:解三角形
分析:由向量式易得
AB
AC
=0,可得∠BAC为直角,可判三角形形状.
解答: 解:∵
AB
BC
+
AB2
=0,
AB
•(
BC
+
AB
)=0,
AB
AC
=0,∴∠BAC为直角,
∴△ABC为直角三角形.
故选:A
点评:本题考查三角形形状的判断,涉及向量的数量积与垂直关系,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=-(x-3)2+18在[2,6]的最大值和最小值分别是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,1),
b
=(-1,2),
c
=(2,-1).
(Ⅰ)求|
a
+
b
+
c
|的值;
(Ⅱ)设向量
p
=
a
+2
b
q
=
a
-2
b
,求向量
夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(1,2),
b
=(-3,2),β是
a
b
的夹角,则cosβ=(  )
A、
13
65
B、
5
65
C、
65
65
D、-
65
65

查看答案和解析>>

科目:高中数学 来源: 题型:

设a<b<0,则下列不等式中不成立的是(  )
A、a+b<-2
ab
B、
-a
-b
C、|a|>-b
D、
1
a-b
1
a

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)满足f(x+1)=f(1-x),若当x∈(-1,1)时f(x)=lg
1+x
1-x
,且f(2014-a)=1,则实数a的值可以是(  )
A、-
11
9
B、
11
9
C、-
9
11
D、
9
11

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x+1)=x2+2x-1,x∈[1,2],则f(x)是(  )
A、[1,2]上的增函数
B、[1,2]上的减函数
C、[2,3]上的增函数
D、[2,3]上的减函数

查看答案和解析>>

科目:高中数学 来源: 题型:

下列各列数都是依照一定的规律排列,在括号里填上适当的数2,3,5,8,12,(  )
A、20B、19C、18D、17

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆方程x2+3y2=12,过点D(2,0)的直线l交椭圆于A、B两点,求△OAB面积的最大值.

查看答案和解析>>

同步练习册答案