精英家教网 > 高中数学 > 题目详情
设函数f(x)=sinx•cosx-
3
cos(π+x)•cosx(x∈R).
(1)求f(x)的最小正周期;
(2)若函数y=f(x)的图象向右、向上分别平移
π
4
3
2
个单位长度得到y=g(x)的图象,求y=g(x)在(0,
π
4
]的值域.
考点:二倍角的正弦,函数y=Asin(ωx+φ)的图象变换
专题:三角函数的求值
分析:(1)利用倍角公式、两角和差的正弦公式、周期公式即可得出;
(2)利用三角函数变换可得y=g(x)=sin(2(x-
π
4
)+
π
3
)+
3
2
+
3
2
=sin(2x-
π
6
)
+
3
,再利用正弦函数的单调性即可得出.
解答: 解:(1)函数f(x)=sinx•cosx-
3
cos(π+x)•cosx=
1
2
sin2x+
3
(1+cos2x)
2

=sin(2x+
π
3
)
+
3
2

T=
2

(2)函数y=f(x)的图象向右、向上分别平移
π
4
3
2
个单位长度得到y=g(x)=sin(2(x-
π
4
)+
π
3
)+
3
2
+
3
2
=sin(2x-
π
6
)
+
3

∵x∈(0,
π
4
],∴(2x-
π
6
)
(-
π
6
π
3
]

sin(2x-
π
6
)
(-
1
2
3
2
]

∴g(x)∈(
3
-
1
2
3
3
2
]
点评:本题考查了倍角公式、两角和差的正弦公式、周期公式、三角函数变换、正弦函数的单调性,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知α,β是二个不同的平面,m,n是二条不同直线,给出下列命题:
①若m∥n,m⊥α,则n⊥α;
②若m∥α,α∩β=n则m⊥n;
③若m⊥α,m⊥β则α∥β;
④若m⊥α,m?β,则α⊥β,
真命题共有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系中,已知
OA
=(4,-4),
OB
=(5,1),
OB
OA
方向上的射影数量为|
OM
|,求
MB
的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(sinθ,cosθ,
2
),
b
=(cosθ,sinθ,
2
2
),且
a
b
,则θ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

判断函数f(x)=x2sinx是否为周期函数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列an=n2sin
2
,则a1+a2+a3+…+a100=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(nπ+
π
2
+x)=-
1
2
,n∈Z,求cosx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,长方体ABCD-A1B1C1D1中,M,N,P分别为线段AB,CD,C1D1的中点.求证:
(1)C1M∥平面ANPA1
(2)平面C1MC∥平面ANPA1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,已知a1=1,an+1=
2n+2
n
an(n=1,2,3,…).
(Ⅰ)证明:数列{
an
n
}是等比数列;
(Ⅱ)求数列{an}的前n项和Sn

查看答案和解析>>

同步练习册答案