精英家教网 > 高中数学 > 题目详情
9.若$\root{6}{4{a}^{2}-4a+1}$=$\root{3}{1-2a}$,则实数a的取值范围是(  )
A.(-∞,2)B.($\frac{1}{2}$,+∞)C.[$\frac{1}{2}$,+∞)D.(-∞,$\frac{1}{2}$]

分析 由已知等式可得1-2a≥0,求解一次不等式得答案.

解答 解:∵$\root{6}{4{a}^{2}-4a+1}$=$\root{6}{(2a-1)^{2}}$=$\root{3}{1-2a}$,
∴1-2a≥0,即$a≤\frac{1}{2}$.
∴实数a的取值范围是(-∞,$\frac{1}{2}$].
故选:D.

点评 本题考查根式与分数指数幂的互化,关键是明确2a-1的符号,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知x、y>0,求k=$\frac{x+y}{\sqrt{{x}^{2}+{y}^{2}}}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.存在x0>0,使$\frac{{x}_{0}}{{x}_{0}^{2}+{3x}_{0}+1}$≥a,则a的取值范围是a≤$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知x,y,z为正数,3x=4y=6z,2x=py.
(1)求p;
(2)证明:$\frac{1}{z}$-$\frac{1}{x}$=$\frac{1}{2y}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列命题中是真命题的是(  )
A.函数y=sin2x的最小正周期是2πB.等差数列一定是单调数列
C.直线y=ax+a过定点(-1,0)D.在△ABC中,若sinB>0,则B为锐角

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知不等式2x+$\sqrt{1-x}$+a≤0对任意的x≤0恒成立,则实数a的取值范围(-∞,-1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.判别下列函数的奇偶性.
(1)y=${x}^{-\frac{1}{3}}$+x3
(2)y=${x}^{\frac{4}{3}}$
(3)y=(x-3)-3+${(x+1)}^{\frac{1}{2}}$
(4)y=${(x}^{4}-{3x}^{2}+1)^{-\frac{1}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.2≤|x|+|y|≤3,则x2+y2-2x的取值范围是$[-\frac{1}{2},15]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.计算(1og63)2+1og618•1og62.

查看答案和解析>>

同步练习册答案