分析 变形可得k=$\sqrt{1+\frac{2xy}{{x}^{2}+{y}^{2}}}$,由x2+y2≥2xy可得答案.
解答 解:由题意可得k=$\frac{x+y}{\sqrt{{x}^{2}+{y}^{2}}}$=$\sqrt{\frac{(x+y)^{2}}{{x}^{2}+{y}^{2}}}$
=$\sqrt{\frac{{x}^{2}+{y}^{2}+2xy}{{x}^{2}+{y}^{2}}}$=$\sqrt{1+\frac{2xy}{{x}^{2}+{y}^{2}}}$
≤$\sqrt{1+\frac{2xy}{2xy}}$=$\sqrt{2}$,当且仅当x=y时取等号,
∴k=$\frac{x+y}{\sqrt{{x}^{2}+{y}^{2}}}$的最大值为$\sqrt{2}$
点评 本题考查基本不等式求最值,变形为可用基本不等式的形式是解决问题的关键,属基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | 4 | C. | $2\sqrt{3}$ | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ∅ | B. | R | C. | $\{x\left|{-\frac{1}{3}}\right.<x<\frac{1}{2}\}$ | D. | $\{x\left|{x≠\frac{1}{6}}\right.\}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,2) | B. | ($\frac{1}{2}$,+∞) | C. | [$\frac{1}{2}$,+∞) | D. | (-∞,$\frac{1}{2}$] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com