分析 根据奇函数的定义,先分析函数的定义域是否关于原点对称,再判断f(-x)与f(x)的关系,可得答案.
解答 解:(1)由$\frac{1-x}{1+x}≥0$得:x∈(-1,1],
故函数f(x)=(x+1)$\sqrt{\frac{1-x}{1+x}}$的定义域不关于原点对称,
故函数f(x)=(x+1)$\sqrt{\frac{1-x}{1+x}}$是非奇非偶函数;
(2)函数f(x)=x+$\root{3}{x}$的定义域R关于原点对称,
又∵f(-x)=-x+$\root{3}{-x}$=-x-$\root{3}{x}$=-(x+$\root{3}{x}$)=-f(x),
故函数f(x)=x+$\root{3}{x}$为奇函数.
点评 本题考查的知识点是函数奇偶性的判断,熟练掌握判断函数奇偶性的方法步骤是解答的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com