精英家教网 > 高中数学 > 题目详情
20.存在x0>0,使$\frac{{x}_{0}}{{x}_{0}^{2}+{3x}_{0}+1}$≥a,则a的取值范围是a≤$\frac{1}{5}$.

分析 写出”存在x0>0,使$\frac{{x}_{0}}{{x}_{0}^{2}+{3x}_{0}+1}$≥a“的否定,求出命题的否定成立时a的范围,再求该命题成立时a的取值范围即可.

解答 解:命题“存在x0>0,使$\frac{{x}_{0}}{{x}_{0}^{2}+{3x}_{0}+1}$≥a”的否定为:
对任意x>0,都有$\frac{x}{{x}^{2}+3x+1}$<a恒成立;
又对任意x>0,都有$\frac{x}{{x}^{2}+3x+1}$<a恒成立时a的范围是:
∵x>0时,$\frac{x}{{x}^{2}+3x+1}$=$\frac{1}{x+\frac{1}{x}+3}$≤$\frac{1}{2\sqrt{x•\frac{1}{x}}+3}$=$\frac{1}{5}$,当且仅当x=1时,取“=”,
∴a>$\frac{1}{5}$;
∴命题“存在x0>0,使$\frac{{x}_{0}}{{x}_{0}^{2}+{3x}_{0}+1}$≥a时,
a的取值范围是:a≤$\frac{1}{5}$.

点评 本题考查了命题与命题的否定的应用问题,也考查了基本不等式的应用问题,是中档题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.不等式3x2-x+2<0的解集为(  )
A.B.RC.$\{x\left|{-\frac{1}{3}}\right.<x<\frac{1}{2}\}$D.$\{x\left|{x≠\frac{1}{6}}\right.\}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知等比数列{an}中,a2a8=4,那么a5=(  )
A.2或-2B.2C.-2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.判断下列函数的奇偶性:
(1)f(x)=(x+1)$\sqrt{\frac{1-x}{1+x}}$;
(2)f(x)=x+$\root{3}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.容器A中有m升水,将容器A中的水缓慢注入容器B中,t分钟后容器A中剩余水量y(单位:升)符合函数关系式y=m•3-at(a为正常数).假设经过5分钟后,容器A中的水量和容器B中的水量相等,再经过n分钟,容器A中的水只剩$\frac{m}{8}$,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在等比数列{an}中,已知a1=3,公比q≠1,等差数列{bn}满足b1=a1,b4=a2,b13=a3
(1)求数列{an},{bn}的通项公式;
(2)记cn=(-1)nbn+an,求数列{cn}的前项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.己知数列{an}满足a1=4,a n+1=3an-2.
(])证明:数列{an-1}为等比数列,并求出an
(2)设bn=kn•log3(an-1)(k为非零常数),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若$\root{6}{4{a}^{2}-4a+1}$=$\root{3}{1-2a}$,则实数a的取值范围是(  )
A.(-∞,2)B.($\frac{1}{2}$,+∞)C.[$\frac{1}{2}$,+∞)D.(-∞,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)求2(1g$\sqrt{2}$)2+1g$\sqrt{2}$•1g5+$\sqrt{(lg\sqrt{2})}$2-lg2+1的值;
(2)若1og2[log3(log4a)]=0,log3[log4(log2y)]=0,求x+y的值.

查看答案和解析>>

同步练习册答案