精英家教网 > 高中数学 > 题目详情

如图:直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=AC=BC=2,D为AB中点.
(1)求证:AB1⊥A1C;
(2)求证:BC1∥平面A1CD;
(3)求C1到平面A1CD的距离.

(1)证明:∵直三棱柱ABC-A1B1C1中,∠ACB=90°,
∴B1C1⊥平面A1ACC1
∵A1C?平面A1ACC1
∴A1C⊥B1C1
连接AC1,∵AC1⊥A1C,∴A1C⊥平面AB1C1
所以AB1⊥A1C
(2)证明:连接AC1交A1C于O点,连接DO,则O为AC1的中点,
∵D为AB中点,∴DO∥BC1
又∵DO?平面A1CD,BC1?平面A1CD,
∴BC1∥平面A1CD.
(3)解:以CA为x轴,CB为y轴,CC1为z轴,建立空间直角坐标系,
∵直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=AC=BC=2,D为AB中点.
∴C(0,0,0),C1(0,0,2),A1(2,0,2),A(2,0,0),B(0,2,0),
∴D(1,1,0),=(2,0,2),=(1,1,0),
设平面A1CD的法向量=(x,y,z),则
,解得=(1,-1,-1),
∴C1到平面A1CD的距离d===
分析:(1)直三棱柱ABC-A1B1C1中,∠ACB=90°,所以B1C1⊥平面A1ACC1,A1C⊥B1C1,由此能够证明AB1⊥A1C
(2)连接AC1交A1C于O点,连接DO,则O为AC1的中点,由D为AB中点,知DO∥BC1,由此能够证明BC1∥平面A1CD.
(3)以CA为x轴,CB为y轴,CC1为z轴,建立空间直角坐标系,利用向量法能够求出C1到平面A1CD的距离.
点评:本题考查异面直线垂直的证明,考查直线与平面平行的证明,考查点到平面的距离的求法,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=1,CB=
2
,侧棱AA1=1,侧面AA1B1B的两条对角线交于点D,B1C1的中点为M,求证:CD⊥平面BDM.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D为A1C1的中点,E为B1C的中点.
(1)求直线BE与A1C所成的角;
(2)在线段AA1中上是否存在点F,使CF⊥平面B1DF,若存在,求出|
AF
|;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图在直三棱柱ABC-A1B1C1中∠ACB=90°,AA1=2,AC=BC=1,则异面直线A1B与AC所成角的余弦值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.
(Ⅰ)求线段MN的长;
(Ⅱ)求证:MN∥平面ABB1A1
(Ⅲ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,AA1=2a,D棱B1B的中点.
(Ⅰ)证明:A1C1∥平面ACD;
(Ⅱ)求异面直线AC与A1D所成角的大小;
(Ⅲ)证明:直线A1D⊥平面ADC.

查看答案和解析>>

同步练习册答案