精英家教网 > 高中数学 > 题目详情
18.设x>0,y>0,且x2+$\frac{{y}^{2}}{2}$=1,求x$\sqrt{1+{y}^{2}}$的最大值.

分析 由基本不等式可得x$\sqrt{1+{y}^{2}}$=$\frac{\sqrt{2}}{2}$•$\sqrt{2}$x•$\sqrt{1+{y}^{2}}$≤$\frac{\sqrt{2}}{2}$•$\frac{{(\sqrt{2}x)}^{2}+(\sqrt{1+{y}^{2}})^{2}}{2}$,代值计算可得.

解答 解:∵x>0,y>0,且x2+$\frac{{y}^{2}}{2}$=1,
∴x$\sqrt{1+{y}^{2}}$=$\frac{\sqrt{2}}{2}$•$\sqrt{2}$x•$\sqrt{1+{y}^{2}}$
≤$\frac{\sqrt{2}}{2}$•$\frac{{(\sqrt{2}x)}^{2}+(\sqrt{1+{y}^{2}})^{2}}{2}$
=$\frac{\sqrt{2}}{2}$•$\frac{2{x}^{2}+{y}^{2}+1}{2}$
=$\frac{\sqrt{2}}{2}$•$\frac{2+1}{2}$=$\frac{3\sqrt{2}}{4}$
当且仅当$\sqrt{2}$x=$\sqrt{1+{y}^{2}}$即x=$\frac{\sqrt{3}}{2}$且y=$\frac{\sqrt{2}}{2}$时取等号,
∴x$\sqrt{1+{y}^{2}}$的最大值为$\frac{3\sqrt{2}}{4}$

点评 本题考查基本不等式求最值,变形为可用基本不等式的形式是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.设函数f(x)=$\frac{1-x}{1+x}$,则f[f(x)]=x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等差数列{an}满足a4=6.a6=10,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.△ABC的三角A,B,C的对边分别为a,b,c满足(2b-c)cosA=acosC.
(1)求A的值;
(2)若a=2,求△ABC面积的最大值;
(3)若a=2,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.(1)方程log3(3x-1)=log3(x-1)+log3(3+x)的解是2;
(2)方程lg(4x+2)=1g2x+1g3的解是0,1;
(3)方程log2(x-1)=2-log2(x+1)的解为$\sqrt{5}$;
(4)方程log3(x2-10)=1+log3x的解是5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若正数a,b满足2a+b=1,则$\frac{a}{2-2a}$+$\frac{b}{2-b}$的最小值是$\frac{2\sqrt{2}}{3}$-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=|x-a|-x.
(1)当a=3时,求函数f(x)的值域;
(2)若g(x)=|x+1|,求不等式g(x)+x>1-f(x)恒成立时a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a>0且a≠1,下列式子中,错误的是(  )
A.$\root{3}{{a}^{2}}$=a${\;}^{\frac{3}{2}}$B.logaa2=2C.a${\;}^{-\frac{3}{5}}$=$\frac{1}{\root{5}{{a}^{3}}}$D.ax-y=$\frac{1}{{a}^{y-x}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.圆C:x2+y2-4x+8y-5=0被抛物线y2=4x的准线截得的弦长为(  )
A.12B.10C.8D.6

查看答案和解析>>

同步练习册答案