分析 设u=2-2a,v=2-b,则a=$\frac{2-u}{2}$,b=2-v,u+v=3,(u,v>0),再由乘1法,运用基本不等式,即可得到所求最小值.
解答 解:设u=2-2a,v=2-b,则a=$\frac{2-u}{2}$,b=2-v,
u+v=3,(u,v>0),
即有$\frac{a}{2-2a}$+$\frac{b}{2-b}$=$\frac{1-\frac{1}{2}u}{u}$+$\frac{2-v}{v}$
=$\frac{1}{u}$+$\frac{2}{v}$-$\frac{3}{2}$=$\frac{1}{3}$(u+v)($\frac{1}{u}$+$\frac{2}{v}$)-$\frac{3}{2}$
=$\frac{1}{3}$(3+$\frac{v}{u}$+$\frac{2u}{v}$)-$\frac{3}{2}$≥$\frac{1}{3}$(3+2$\sqrt{\frac{v}{u}•\frac{2u}{v}}$)-$\frac{3}{2}$
=1+$\frac{2\sqrt{2}}{3}$-$\frac{3}{2}$=$\frac{2\sqrt{2}}{3}$-$\frac{1}{2}$.
当且仅当v=$\sqrt{2}$u=6-3$\sqrt{2}$时,取得最小值.
故答案为:$\frac{2\sqrt{2}}{3}$-$\frac{1}{2}$.
点评 本题考查基本不等式的运用:最值的求法,注意运用乘1法,以及满足的条件:一正二定三等,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| y1 | y2 | 总计 | |
| x1 | a | 21 | 73 |
| x2 | 8 | 25 | 33 |
| 总计 | b | 46 |
| A. | 94,96 | B. | 52,50 | C. | 52,60 | D. | 54,52 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com