精英家教网 > 高中数学 > 题目详情
4.设函数f(x)=|x-a|,a∈R.
(1)若a=1,解不等式f(x)≥$\frac{1}{2}$(x+1);
(2)记函数g(x)=f(x)-|x-2|的值域为A,若A⊆[-1,3],求a的取值范围.

分析 (1)将a=1代入f(x),通过讨论x的范围求出各个区间上的x的范围,取并集即可;(2)通过讨论a的范围,得到关于a的不等式组,解出即可.

解答 解:(1)a=1时,f(x)=|x-1|≥$\frac{1}{2}$(x+1),
x≥1时:x-1≥$\frac{1}{2}$(x+1),解得:x≥3,
x<1时:1-x≥$\frac{1}{2}$(x+1),解得:x≤$\frac{1}{3}$,
故不等式的解集是{x|x≥3或x≤$\frac{1}{3}$};
(2)g(x)=|x-a|-|x-2|,
a≥2时:g(x)=$\left\{\begin{array}{l}{2-a,x≥a}\\{a+2-2x,2<x<a}\\{a-2,x≤2}\end{array}\right.$,
∴2-a≤g(x)≤a-2,
∴$\left\{\begin{array}{l}{2-a≥-1}\\{a-2≤3}\end{array}\right.$,解得2≤a≤3;
a<2时:g(x)=$\left\{\begin{array}{l}{2-a,x≥2}\\{2x-a-2,a<x<2}\\{a-2,x≤a}\end{array}\right.$,
∴a-2≤g(x)≤2-a,
∴$\left\{\begin{array}{l}{a-2≥-1}\\{2-a≤3}\end{array}\right.$,解得:1≤a<2;
综上:a∈[1,3].

点评 本题考查了解绝对值不等式问题,考查分类讨论思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.若lgx+lgy=2,求5x+2y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知等差数列{an}的前n项和为Sn,数列{bn}是等比数列,满足a1=3,b1=1,b2+S2=10,a5-2b2=a3
(Ⅰ)求数列{an}和{bn}通项公式;
(Ⅱ)令${c_n}=\left\{{\begin{array}{l}{\frac{2}{S_n},(n为奇数)}\\{{b_n},(n为偶数)}\end{array}}\right.$,设数列{cn}的前n项和Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若不等式f(x)≤0(x∈R)的解集为[-1,2],则不等式f(lgx)>0的解集为(0,$\frac{1}{10}$)∪(100,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=sin24x是(  )
A.最小正周期为$\frac{π}{4}$的奇函数B.最小正周期为π的奇函数
C.最小正周期为$\frac{π}{4}$的偶函数D.最小正周期为π的偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}
(1)若A∩B=B,求实数a的值;
(2)若A∪B=B,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知a≥0,当x为何值时,函数f(x)=(x2-2ax)•ex取得最小值?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}满足an+1=2an+n-1,且a1=1.
(Ⅰ)求证:{an+n}为等比数列;
(Ⅱ)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.直线x+my+3=0与圆x2+y2+x-6y+3=0的交点为P,Q,O为坐标原点,若$\overrightarrow{OP}$⊥$\overrightarrow{OQ}$,求m的值.

查看答案和解析>>

同步练习册答案