精英家教网 > 高中数学 > 题目详情
13.已知数列{an}满足an+1=2an+n-1,且a1=1.
(Ⅰ)求证:{an+n}为等比数列;
(Ⅱ)求数列{an}的前n项和Sn

分析 (Ⅰ)利用an+1=2an+n-1化简$\frac{{a}_{n+1}+(n+1)}{{a}_{n}+n}$即得结论;
(Ⅱ)通过a1=1可知数列{an+n}是首项、公比均为2的等比数列,进而可求出数列{an}的通项公式,进而利用分组法求和计算即得结论.

解答 (Ⅰ)证明:∵an+1=2an+n-1,
∴$\frac{{a}_{n+1}+(n+1)}{{a}_{n}+n}$=$\frac{2{a}_{n}+n-1+(n+1)}{{a}_{n}+n}$=2,
∴数列{an+n}为等比数列;
(Ⅱ)解:∵a1+1=2,
∴数列{an+n}是首项、公比均为2的等比数列,
∴an+n=2n,即an=-n+2n
∴Sn=-(1+2+…+n)+(21+22+…+2n
=-$\frac{n(n+1)}{2}$+$\frac{2(1-{2}^{n})}{1-2}$
=2n+1-$\frac{n(n+1)}{2}$-2.

点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和Sn满足Sn=2an+n2(n∈N*
(Ⅰ)证明:数列{an-2n-3}是等比数列;
(Ⅱ)设bn=$\frac{1}{{a}_{n}+3•{2}^{n}}$,求数列{bnbn+1}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=|x-a|,a∈R.
(1)若a=1,解不等式f(x)≥$\frac{1}{2}$(x+1);
(2)记函数g(x)=f(x)-|x-2|的值域为A,若A⊆[-1,3],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.2位男生和3位女生共5位同学站成一排,则3位女生中有且只有两位女生相邻的概率是(  )
A.$\frac{3}{10}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数f(x)=$\left\{\begin{array}{l}{a^{\;x}}\;,x<1\\|{{x^2}-2x}|,x≥1\end{array}$(其中a>0,a≠1),若不等式f(x)≤3的解集为(-∞,3],则实数a的取值范围为(1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.有两位环保专家从A,B,C三个城市中每人随机选取一个城市完成一项雾霾天气调查报告,两位专家选取的城市可以相同,也可以不同.
(1)求两位环保专家选取的城市各不相同的概率;
(2)求两位环保专家中至少有一名专家选择A城市的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,BC=$\sqrt{6}$,|${\;\overrightarrow{AB}•\overrightarrow{AC}\;}$|=2.
(1)求证:△ABC三边的平方和为定值;
(2)当△ABC的面积最大时,求cosB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,在复平面内,表示复数z的点为A,则复数$\frac{z}{1-2i}$对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,角A,B,C的对边分别为a,b,c,且a=$\sqrt{5}$,b=3,sinC=2sinA,则△ABC的面积为3.

查看答案和解析>>

同步练习册答案