精英家教网 > 高中数学 > 题目详情
已知2a>2,则a的取值范围为
 
考点:其他不等式的解法
专题:计算题
分析:直接利用指数不等式的求法求解即可.
解答: 解:因为指数函数y=2x是增函数,所以2a>2,可得a>1,即a∈(1,+∞).
故答案为:(1,+∞).
点评:本题考查不等式的解法,考查指数函数的单调性,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若关于x的二次函数y=x2-3mx+3的图象与端点为A(
1
2
5
2
)
、B(3,5)的线段(包括端点)只有一个公共点,则m不可能为(  )
A、
1
3
B、
1
2
C、
5
9
D、
7
9

查看答案和解析>>

科目:高中数学 来源: 题型:

求f(x)=x2-2ax+2在[-2,4]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

乒乓球赛规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为
3
5
,各次发球的胜负结果相互独立,甲、乙的一局比赛中,甲先发球.
(1)求开始第4次发球时,甲、乙的比分为1比2的概率;
(2)ξ表示开始第4次发球时乙的得分,求ξ的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°
.M是PD的中点.
(1)证明PB∥平面MAC;
(2)证明平面PAB⊥平面ABCD;
(3)求直线PC与平面PAD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥V-ABCD中,底面ABCD是边长为2的正方形,其它四个侧面都是侧棱长为
5
的等腰三角形,AC∩BD=O.
(1)求二面角V-AB-C的大小
(2)求点O到平面VAB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足x2+y2=1,则
y+2
x+1
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的方程是:x2+y2=4,P是圆C上任意一点,过点P作PD⊥x轴于点D,M为PD的中点.
(1)求点M的轨迹E的方程;
(2)若直线l与轨迹E交于A(x1,y1),B(x2,y2)两点,已知
m
=(x1,2y1),
n
=(x2,2y2)
,若
m
n
.试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为平面直角坐标系的原点,过点M(-2,0)的直线l与圆x2+y2=1交于P,Q两点.若|PQ|=
3
,求直线l的方程.

查看答案和解析>>

同步练习册答案