精英家教网 > 高中数学 > 题目详情
王师傅驾车去超市,途中要经过4个路口,假设在各路口遇到红灯的概率都是
1
3
,遇到红灯时,在各路口停留的时间依次为30秒,30秒,60秒,30秒
(Ⅰ)求王师傅在第3个路口首次遇到红灯的概率;
(Ⅱ)求王师傅在途中因遇到红灯停留的总时间X(秒)的分布列及数学期望.
考点:离散型随机变量的期望与方差,相互独立事件的概率乘法公式
专题:应用题,概率与统计
分析:(Ⅰ)王师傅在第3个路口首次遇到红灯,则前2个路口没有遇到红灯,故可求概率;
(Ⅱ)X=0,30,60,90,120,150,求出随机变量取每一个值的概率值,即可求X的分布列及其数学期望EX.
解答: 解:(Ⅰ)设“王师傅在第3个路口首次遇到红灯”为事件A,则
P(A)=(1-
1
3
)2×
1
3
=
4
27

(Ⅱ)X=0,30,60,90,120,150,则
P(X=0)=(1-
1
3
)4
=
16
81
,P(X=30)=
C
1
3
×
1
3
×(1-
1
3
)3
=
8
27

P(X=60)=
C
2
3
×(
1
3
)2×(1-
1
3
)2+(1-
1
3
)3×
1
3
=
20
81

P(X=90)=(
1
3
)3×(1-
1
3
)+
C
1
3
×(
1
3
)2×(1-
1
3
)2
=
14
81

P(X=120)=
C
1
3
×(1-
1
3
)×(
1
3
)3
=
2
27

P(X=150)=(
1
3
)4
=
1
81

X的分布列为
 X  0  30  60  90  120  150
 P  
16
81
 
8
27
 
20
81
 
14
81
 
2
27
 
1
81
数学期望EX=0×
16
81
+30×
8
27
+60×
20
81
+90×
14
81
+120×
2
27
+150×
1
81
=50.
点评:求随机变量的分布列与期望的关键是确定变量的取值,求出随机变量取每一个值的概率值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知回归直线的斜率的估计值是2,样本点的中心为(4,12),则回归直线的方程是(  )
A、
y
=2x+4
B、
y
=
5
2
x+2
C、
y
=2x-20
D、
y
=
1
6
x+2

查看答案和解析>>

科目:高中数学 来源: 题型:

一个四面体的四个顶点在空间直角坐标系O-xyz中的坐标分别是(0,0,0),(1,2,0),(0,2,2),(3,0,1),则该四面体中以yOz平面为投影面的正视图的面积为(  )
A、3
B、
5
2
C、2
D、
7
2

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,如果输入a=2,那么输出的结果为(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

在一次对某班42名学生参加课外篮球、排球兴趣小组(每人参加且只参加一个兴趣小组)情况调查中,经统计得到如下2×2列联表:(单位:人)
篮球 排球 总计
男同学 16 6 22
女同学 8 12 20
总计 24 18 42
(Ⅰ)据此判断是否有95%的把握认为参加“篮球小组”或“排球小组”与性别有关?
(Ⅱ)在统计结果中,如果不考虑性别因素,按分层抽样的方法从两个兴趣小组中随机抽取7名同学进行座谈.已知甲、乙、丙三人都参加“排球小组”.
①求在甲被抽中的条件下,乙丙也都被抽中的概率;
②设乙、丙两人中被抽中的人数为X,求X的分布列及数学期望E(X).
下面临界值表供参考:
P(K2≥k0 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828
参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

在公差不为零的等差数列{an}中,a1=8-a3,且a4为a2和a9的等比中项,求数列{an}的首项、公差及前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆E的圆心在x轴上,且与y轴切于原点.过抛物线y2=2px(p>0)焦点F作垂直于x轴的直线l分别交圆和抛物线于A、B两点.已知l截圆所得的弦长为
3
,且2
FA
=
3
FB

(Ⅰ)求圆和抛物线的标准方程;
(Ⅱ)若P在抛物线运动,M、N在y轴上,且⊙E的切线PM(其中B为切点)且PN⊙E与有一个公共点,求△PMN面积S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在几何体ABC-A1B1C1中,点A1、B1、C1在平面ABC内的正投影分别为A、B、C,且AB⊥BC,AA1=BB1=4,AB=BC=CC1=2,E为AB1的中点.
(Ⅰ)求证:CE∥平面A1B1C1
(Ⅱ)求二面角B1-AC1-C的大小:
(Ⅲ)设点M为△ABC所在平面内的动点,EM⊥平面AB1C1,求线段BM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

一次考试共有8道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有5道题的答案是正确的,其余题中:有一道题可以判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.请求出该考生:
(Ⅰ)得40分的概率;
(Ⅱ)设所得分数为随机变量X,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案