精英家教网 > 高中数学 > 题目详情
某市电视台在因特网上征集电视节目的现场参与观众,报名的共有12000人,分别来自4个城区,其中东城区2400人,西城区4605人,西城区3795人,北城区1200人,用分层抽样的方式从中抽取60人参加现场节目,应当如何抽取?
考点:分层抽样方法
专题:概率与统计
分析:先求出每个个体被抽到的概率,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数.
解答: 解:在分层抽样中,每个个体被抽到的概率等于 
60
12000
=
1
200

则东城区2400人抽取2400×
1
200
=12人,
西城区4605人抽取4600×
1
200
=23人,
西城区3795人抽取3800×
1
200
=19人,
北城区1200人抽取1200×
1
200
=6人.
点评:本题主要考查分层抽样的应用,根据条件建立比例关系是解决本题的关键.比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

复数z=(1+i)2的实部是(  )
A、2B、1C、0D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

一个三次函数y=f(x),当x=3时取得极小值y=0,又在此函数的曲线上点(1,8)处的切线经过点(3,0),求函数f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)满足f(4-x)=f(x),它在x轴上截得的线段长为6,且函数图象过(3,-8),求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲袋中有1只白球,2只红球,3只黑球;乙袋中有2只白球,3只红球,1只黑球.现从两袋中各取一个球.
(1)求取得一个白球一个红球的概率;
(2)求取得两球颜色相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知|
OA
|=2,|
OB
|=1
|
OC
|=4
OA
OB
的夹角为120°,
OA
OC
的夹角为30°,用
OA
OB
表示
OC

查看答案和解析>>

科目:高中数学 来源: 题型:

若a、b是函数f(x)=|log3x|-3-x的两个零点,则(  )
A、0<ab<1
B、ab=1
C、1<ab<2
D、ab≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数a、b、c、d满足
a2-lna
b
=
c-4
d
=1,则(a-c)2+(b-d)2的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ae2x-be-2x-cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线斜率为4-c,若f(x)有极值,则c的取值范围是(  )
A、(2,+∞)
B、[2,+∞)
C、[4,+∞)
D、(4,+∞)

查看答案和解析>>

同步练习册答案