精英家教网 > 高中数学 > 题目详情
,b=ln2·ln3,,则a、b、c的大小关系是

[     ]

A.a>b>c
B.c>a>b
C.c>b>a
D.a>c>b
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

a=lnπ,b=ln
,c=ln
1
π
,则(  )
A、a>b>c
B、a>c>b
C、b>a>c
D、c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:

记函数f(x)=ln(1+x),g(x)=x.
(1)若函数F(x)=af(x)+g2(x)在x=1处取得极值,试求a的值;
(2)若函数G(x)=af(x)+g2(x)-b•g(x)有两个极值点x1,x2,且x1∈[-
4
5
,-
3
5
],x2∈[0,1]
,试求a的取值范围;
(3)若函数H(x)=
1
f(x)
-
1
g(x)
对任意x1,x2∈[1,3]恒有|H(x1)-H(x2)|≤a成立,试求a的取值范围.(参考:ln2≈0.7)

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:设函数y=f(x)在(a,b)内可导,f'(x)为f(x)的导数,f''(x)为f'(x)的导数即f(x)的二阶导数,若函数y=f(x) 在(a,b)内的二阶导数恒大于等于0,则称函数y=f(x)是(a,b)内的下凸函数(有时亦称为凹函数).已知函数f(x)=xlnx
(1)证明函数f(x)=xlnx是定义域内的下凸函数,并在所给直角坐标系中画出函数f(x)=xlnx的图象;
(2)对?x1,x2∈R+,根据所画下凸函数f(x)=xlnx图象特征指出x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]与x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]的大小关系;
(3)当n为正整数时,定义函数N (n)表示n的最大奇因数.如N (3)=3,N (10)=5,….记S(n)=N(1)+N(2)+…+N(2n),若
2n
i=1
xi=1
,证明:
2n
i=1
xilnxi≥-ln2n
ln
1
3S(n)-2
(i,n∈N*).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

a=lnπ,b=ln
,c=ln
1
π
,则(  )
A.a>b>cB.a>c>bC.b>a>cD.c>b>a

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

a=lnπ,b=ln
,c=ln
1
π
,则(  )
A.a>b>cB.a>c>bC.b>a>cD.c>b>a

查看答案和解析>>

同步练习册答案