精英家教网 > 高中数学 > 题目详情
已知正三棱柱ABC-A1B1C1的棱长相等,E是A1B1的中点,F是B1C1的中点,则异面直线AE和BF所成角的余弦值是(  )
分析:取BC的中点,寻找AF的平行直线GF,将异面直线AE和BF所成的角转化为BF与GF所成的角,然后利用余弦定理求夹角即可.
解答:解:取AC的中点为G,连结BG,GF,EF,
∵E是A1B1的中点,F是B1C1的中点,
∴EF∥AG,且EF=AG,
即四边形AGFE是平行四边形,
∴AE=GF,
∴BF与GF所成的角即是异面直线AE和BF所成的角.
∵正三棱柱ABC-A1B1C1的棱长相等,∴设棱长为1,
则BG=
3
2
,GF=AG=
1+(
1
2
)2
=
5
4
=
5
2
,BF=
1+(
1
2
)2
=
5
4
=
5
2

∴在三角形BGF中,由余弦定理得cos?∠BFG=
BF2+GF2-BG2
2?BF?GF
=
(
5
2
)
2
+(
5
2
)
2
-(
3
2
)
2
2?(
5
2
)
2
=
7
10

故异面直线AE和BF所成角的余弦值是
7
10

故选:A.
点评:本题主要考查空间异面直线所成角的求法,利用平移直线法是解决的基本方法,本题也可以建立空间直角坐标系,利用向量法求夹角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知正三棱柱ABC-A1B1C1的底面边长为1,高为h(h>2),动点M在侧棱BB1上移动.设AM与侧面BB1C1C所成的角为θ.
(1)当θ∈[
π
6
π
4
]
时,求点M到平面ABC的距离的取值范围;
(2)当θ=
π
6
时,求向量
AM
BC
夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三棱柱ABC-A1B1C1的每条棱长均为a,M为棱A1C1上的动点.
(1)当M在何处时,BC1∥平面MB1A,并证明之;
(2)在(1)下,求平面MB1A与平面ABC所成的二面角的大小;
(3)求B-AB1M体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三棱柱ABC-A1B1C1,底面边长为8,对角线B1C=10,
(1)若D为AC的中点,求证:AB1∥平面C1BD;
(2)若CD=2AD,BP=λPB1,当λ为何值时,AP∥平面C1BD;
(3)在(1)的条件下,求直线AB1到平面C1BD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知正三棱柱ABC-A1B1C1中,D是BC的中点,AA1=AB=1.
(1)求证:平面AB1D⊥平面B1BCC1
(2)求证:A1C∥平面AB1D;
(3)求二面角B-AB1-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•湖北模拟)如图,已知正三棱柱ABC-A1B1C1各棱长都为a,P为棱A1B上的动点.
(Ⅰ)试确定A1P:PB的值,使得PC⊥AB;
(Ⅱ)若A1P:PB=2:3,求二面角P-AC-B的大小;
(Ⅲ)在(Ⅱ)的条件下,求点C1到面PAC的距离.

查看答案和解析>>

同步练习册答案